
Chapter Five
Structured Storage and Compound Files

Seems like every time you turn around these days there's another set of APIs to read and write files, such as
the addition of memory-mapped file I/O under Windows NT. Every mechanism available is concerned only
with the functions you can use to create any sort of arbitrary structure within a disk file. In other words, all of
the available file I/O techniques are completely ignorant of the file structure as the functions blindly obey
their masters and read or write data as they are told. What is missing from the whole picture is any sort of
standardization on exactly how data is structured within any particular file regardless of the underlying file
system. This standardization is specified in OLE 2.0 as the Structured Storage Model. The implementation
of this standard is provides in OLE 2.0 as Compound Files. Both will become incorporated into future
versions of the Windows operating system.

Structured Storage describes how to create a 'file system within a file' and how to expose that structure
through two types of objects called storages and streams. A storage object within the file acts like a file
system directory and holds other storage and stream objects. A stream object within the file acts like a file
system file that contains any data you desire. Storage and stream objects greatly simplify storage of complex
information within a single file on a physical storage device and inherently support powerful and very
desirable features like incremental saves. In addition, Structured Storage specifies standard but flexible data
structures called property sets which are used to standardize the data stored inside specific streams within a
specific file.

What? Microsoft is asking me to change my file format? Are they drunk or something? Such was a
common response I heard when Microsoft first presented the idea of Structured Storage that defines a
standardized technique for structuring blocks of data within the confines of a single disk file regardless of the
underlying file system. While not trying to change what structures you can actually store in those blocks,
Structured Storage does change where those blocks actually exist on disk. It also allows you to standardize
specific data structures within a few of those blocks, but by no means requires it.

What good is this standardization? It means that given an arbitrary disk file that conforms to the
Structured Storage Model, any other piece of code that also knows the model might be able to open that file
and examine its contents. If that file contains a standardized property set for something like "Summary
Information" that contains title, subject, author, and keywords, then any application familiar with that
property set could open the file and determine the title and subject of the document, who wrote it, and
possibly search the list of keywords. This is opposed to what we have today where only the application that
originally wrote the file can open and browse the contents of that file. Structured storage enables anyone,
such as the system shell, to perform the same browsing functions. To the end-user, this eliminates a host of
application-specific techniques to find information in files consolidating it into one uniform system-wide tool.
Through such a tool an end-user could enter in a query like "Find all the documents I wrote with the word
'vegetarian' in the title" and the system shell would go off and find all files that contained such information.
For the applications programmer, this replaces the need to write full browsing yourself with writing files
containing a specific property set stream. As we'll see, the latter is considerably less work.

Standardization is one thing, implementation is another–how can we all be assured that we'll all
implement the Structured Storage standards in our files the same way? Well, we can't, so Microsoft has
provided an implementation of structured storage called Compound Files contained in OLE 2.0's
STORAGE.DLL. Compound Files implements storage and stream objects on top of the FAT file system
under Windows 3.1 and on top of FAT and NTFS under Windows NT.1 You can use Compound Files as you
would any other set of file I/O APIs, and in fact, how you manipulate a stream object corresponds directly
with how we manipulate a file handle today as this chapter will demonstrate. To your application, the data in
a stream always appears contiguous, although that data may not actually be stored contiguously within the file
itself. This is no different than how file systems like FAT let you look at a file as a contiguous block of bytes
through a file handle although the actual bytes are scattered across the disk in disparate sectors.

Ages ago applications had to concern themselves with the absolute sectors in which they stored their data
which was painful, to say the least. File systems came along and allowed applications to treat files as a single
block, not as separate sectors–what a blessing! Today the structures within files themselves as becoming as
painful to maintain as absolute sectors used to be and so OLE 2.0, in Compound Files, is providing the
equivalent of a file system within a file to redeem you from the burden of maintaining seek offsets a plenty.
The beginning of this chapter will hopefully convince you that problems exist and how structured storage

1What about the Mac? Do we care?

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 2 :

solves those problems, which is then followed by a review of the features and capabilities of OLE 2.0's
implementation of storage and stream objects.

In keeping with the theme of this book, you know there are storage and stream objects, so how do you
obtain pointers to those objects? What are the interfaces those objects support? What can you do with those
objects? You will find your answers in this chapter as we explore how to make simple use of compound files,
followed by more complex usage, leading finally to a discussion on how these objects relate to the rest of
OLE 2.0 and in particular, compound document containers and objects.

If you choose to use compound files you will, of course, change your absolute file format on the disk,
although there is no need for your internal data structures to change at all. For almost all applications,
compound files are optional. The only code that must use them are OLE 2.0 compound document objects and
containers: a container must give every embedded object must be its own piece of storage from which to load
and save itself. However, this does not mean you must use compound files for your container's own native
storage: you can create a compound file in memory for an embedded object and then write the contents of
that memory to your own files wherever you like. An outline of this process is described in a section of this
chapter and is treated again in Chapter 9 in the context of OLE 2.0 containers. OLE objects must be able to
load and save embedded object data through compound files, but that does not change any aspect about your
application's disk file format.

One of the major programmatic benefits of structured storage is that you can use it as a sharable data
transfer medium, that is, an storage object (a piece of a compound file) can be marshaled to another process.
This means that instead of always transferring data through global memory you can transfer data through a
pointer to data on the disk without having to actually load any data. The only process that needs to actually
pull the data into memory is the process that needs to edit and manipulate that data. In other words, only one
copy exists in memory. The process that manipulates the data furthermore has incremental access improving
performance even more. This capability can be used for data transfer as well see in Chapter 6, and is used for
compound document object transfer as well see in Chapters 9-11.

Microsoft was originally motivated to define Structured Storage to improve the performance of
compound document scenarios and for the tremendous end-user benefit of shell level document browsing.
Other innovations for dealing with traditional files really do little to simplify how you maintain a complex
structure within any particular file. Memory-mapped file I/O under Windows NT just changes the expression
of that complexity from a file handle into a pointer with some benefit, of course, but about the same amount
of paint. Structured Storage is the one technology to truly solve the problems of file structure just like the file
system solved the problems of disk structure.

Motivation
A man and his 16-year old daughter were traveling to Washington, D.C. from Seattle via Chicago. Their
plane arrived late in Chicago causing them to miss their connecting flight, and so they were awarded First
Class seats on the next flight. The father was excited–it had been a long time since he last rode in the posh
forward cabin and looked forward to warming his innards with the smoothness of fine drink. He exercised his
early-boarding privilege and, as protocol demands, the steward asked him if he would like a drink before
takeoff. No problem, gin and tonic it is. The man, drink in hand, leaned back and began enjoying the start of
what would be a wonderfully relaxing flight. That is, it would have been if his daughter had not asked a
simple but probing question, one that would change pleasure to guilt, one for which he had no answer. She
asked with a menacing stare, "Just what exactly does that do for you?"

So what does structured storage, and OLE 2.0's implementation of Compound Files, do for you? In a
manner of speaking, compound files give you the warmth of alcohol without the hangover. But in no way are
you required to drink: this section will, however, encourage you to "start the habit" so-to-speak as we explore
how we might add file I/O capabilities to the Patron sample, which to this point has no provision for such
operations.
Patron Files with a Hangover
Patron is designed to have a document made of pages where each page serves as the inn for any number of
bitmaps, metafiles, and compound document objects, that is, tenants. We need a file layout for each
document that describes those contents. If we were to implement Patron using traditional file I/O, we would
create a layout with three primary structures:

1. File header structure contains how many pages are in the document, the printer
configuration (a serialized DEVMODE structure), and an offset to the first page.
2. Page structure contains a header specifying how many tenants (metafiles, bitmaps, OLE

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 3

objects) live on this page, an offset of the next page, and a variable length list of offsets to the
tenants. All page structures are stored sequentially in the file before writing any tenants.
3. Tenant structures contain header information such as the length of the record in the file and
the type of tenant followed by a serialization of the tenant's actual data.

Such structures would result in a layout shown in Figure 5-1.

Figure 5-1: A possible Patron file with traditional file I/O.

Certainly this sort of layout is manageable, albeit tedious. When we write a file in this format we would
first write the file header, then all the page headers, then all the tenants. Writing the file header is simple
since we know its size and can easily calculate the offset of the first page to store in this header. Before
writing the page headers, we need to build the entire list in memory to determine the total size of the page list
and store the appropriate tenant offsets in each page structure. Once we have this list, we write it all out to
disk at once, then writing each tenant in turn. Besides a little tedium in calculating all the offsets, this code
would be simple enough and performance would be good since all the pages are at the front of the file and we
only have to do potentially large seeks when accessing a particular tenant.

Let's say now that the user deletes a page. We have two choices the next time we save. One is to rewrite
the entire file, which is typically the easiest choice. The other is to mark the deleted page in the file as
'unused' and mark all the tenant spaces that were deleted as 'unused' as well. This would not reduce the file
size but would allow a very quick save.

Now the user adds a page in the middle of the document and adds a few tenants to that page. If this new
page structure can fit in an unused page block from one previously deleted, we could attempt to incrementally
write the new document, storing the new page structure over the deleted one and modifying the stored seek
offset of the previous page to point to this new one. If there are no open spaces for this new page, we can
either append the page structure to the end of the file, store it in free space from a deleted tenant, or choose to
rewrite the entire file. Choosing either of the first two options defeats the purpose of originally storing page
structures in sequence before storing any tenants. Choosing the last option is potentially slow since Patron
files, housing bitmaps and metafiles and OLE objects, can become quite huge.

At this point we do what engineers call "compromise" and weigh the possible options: we can have
incremental saves with file fragmentation or we can have efficient files for reading with slower-than-molasses
saves. In a performance-driven market, we generally choose incremental saves so the save timings look great
in the trade rag reviews. Get a few developers to put in some overtime and you'll have a wonderfully
elaborate scheme of managing free space in your files as best you can as you would handle free space in any
memory manager. You would allow 'fast saves' or 'full saves,' the latter of which would full defragment the
file by performing a full rewrite. Cool. We just turned a problem into a couple of 'features' by writing a great
deal of file management code. That's all well and done, but the effort to write such code may have required
you to sacrifice other important features of your application. Next version, I guess.

Realize that investing an enormous effort providing for file defragmentation does not really buy you a
whole lot until the user defragments their hard disk. Even though your applications sees the file as
defragmented, the actual physical location of the bytes on the disk is generally random since the file system
isolates you from physical sector locations. All that effort you made to defragment your file structures doesn't
really improve performance significantly; when the disk itself is fragmented, a 128 byte seek in your file may
equate to a 128MB seek on the disk and a 10MB seek in your file may actually only seek 10K on the disk.

File defragmentation is only a way to compress the file or reduce the file size down to minimum, an
important feature for users that might want to copy the file to a floppy or upload it at a painful 2400 baud to a
BBS. Implementing your own defragmentation serves no other purpose.

Yep, that code felt good, but now comes the hangover: all that code does not do everything you wanted.
The Non-Alcoholic Alternative
If we could afford ourselves the luxury, we would save an enormous amount of time if Patron could just write
its files in a directory tree instead of one huge file. This would have serious problems for end users since
there would not be one file to just copy off the system–it would have to be a more involved backup of many
directories. But again, if we could, using a directory tree would be much, much simpler to implement:

1. The file becomes the 'root' directory for the storage, not necessarily the root directory on a
disk as this root may be a subdirectory somewhere on the disk, but as far as Patron is concerned,
its the root of the file. In this directory we store a file that contains the number of pages in this

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 4 :

document, the printer configuration, and the name of the first page. This is the same type of
information that we would store in a file header.
2. Each page itself is a subdirectory off the root with a name like PAGEnnnn.nnn which would
allow up to 10 million pages per document. Within each page subdirectory is a file containing
the page information which could contain the names of tenants, like a single file format would
store offsets.
3. Each tenant would have an entire file to itself, or better yet, an entire subdirectory off the
page in which we could write as many files as necessary to save that tenant.

This scheme would create the layout shown in Figure 5-2.

Figure 5-2: A possible Patron storage scheme using directories.

This implementation has promise (again at the sacrifice of file portability) When we add a page, we only
need to create another directory off the root and write a file containing page information. We never have to
worry about rewriting the entire storage; there is simply no need because we let the file system worry about
actual placement of the data. When we delete a page, we delete the directory and all its contents, returning
the space to the file system which manages reuse of that space already. Therefore we have no need to provide
for defragmentation, instead allowing the end user to choose their own tool.

In addition, adding a tenant to a page is as simple as creating a subdirectory off the page and writing all
the tenants information into however many files is convenient in that new directory. The page itself doesn't
even need to keep track of the tenants itself since it can just ask the file system for a list of directories in the
form, for example, TEN*.*.

All elements, the file header, the pages, and each tenant, individually benefit from incremental saves.
Changing the size of any particular file in this storage model or changing the number of subdirectories of any
other directory does not affect any other aspect of the entire storage. There is no need for ever rewriting the
entire storage. Applications that store bitmaps and metafiles can appreciate this, since those data tend to
become very large.

Of course, the FAT file system can slow to a crawl with too many files or subdirectories in a single
directory since it uses a sequential search through the directory sectors. More advanced file systems like
NTFS use binary search algorithms to improve performance, so depending on your needs you would choose
the appropriate file system on which to base your storage.

Alcohol without the Hangovers: Compound Files
Up to now you have two choices: drink and get a hangover or drink non-alcoholic beverages and risk
alienation from your social group. What we really want is an alcoholic drink with no side effects (synthahol),
in other terms, we want the efficiency and benefits of using a directory structure like the file system but we
want to keep that within a single file in order to allow document portability. We want a file system as
efficient as NTFS implemented within a file. We want OLE 2.0's Structured Storage Model.

Structured storage in itself is not implementation but rather a specification of how storage is exposed to
the system and applications. The OLE 2.0-provided implementation of the model is called Compound Files
which sits on top of the actual file system and takes full advantage of that system. Compound files provides
all the free-space management for you just like any other file system, exposing your files to your application
as two objects: streams and storages. The former implements an interface called IStream, the latter an
interface called IStorage. Streams are the logical equivalent of a disk file while storages are like directories.

Using streams and storages we'll implement Patron's file I/O with a structure shown in Figure 5-3.
Directories have become storages, files have become streams. Best of all, instead of this entire structure
living separated on the file system, it lives within a single file that an end user may copy as any other a single
file.

Figure 5-3: Patron's storage scheme using Compound Files.

Features of Compound Files
The design of structured storage, and specifically the Compound File implementation, provides a number of

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 5

significant features which applications can exploit to their benefit. You need to be familiar with these
features before we can apply them in practice:

1. Streams, Storages, and LockBytes Objects: Units of data, directories, and byte arrays on the
physical device.
2. Element Naming: Storages and streams can have names up to 31 characters.
3. Access Modes: Storages and streams can be opened in transacted mode such that changes
are cached until committed (flushed).
4. Incremental Access: Modifications to any element does not require a complete file rewrite
and elements can be read as little as necessary.
5. Sharable Elements: Storage and stream objects can be passed to other processes.

Again, use of compound files is completely optional for all but OLE 2.0 container applications, and even
those can skirt the issue (but with a little cost to overall performance). However, many applications can
greatly simplify their storage management by building on top of compound files, implementing an
incremental save feature with little code or a feature to revert changes to a document without having to
manage any previous state yourself. That code now exists in the storage implementation.
Stream, Storage, and LockBytes Objects
Structured storage is defined in terms of three objects: a stream contain data like a file, a storage contain
streams and storages like a directory, and a LockBytes presents some physical device as a generic byte array.
These objects combine to for the structured storage model as shown in Figure 5-4.

Figure 5-4: LockBytes sit on a device, a root storage build on the LockBytes, streams and storages
live inside the any other storage.

All three objects Windows Objects just as described in Chapter 3, that is, they each implement one or
more interfaces and provide separate function tables for each. 1 A LockBytes object supports the ILockBytes
interface and to obtain a pointer you can either call an OLE 2.0 API for standard implementations or
implement your own, in which case you already have the pointer. A storage object implements the IStorage
interface to which you obtain a pointer by calling one of a number of other APIs or by calling a IStorage
member function in an existing storage object . Some of the APIs create a storage object on the default file
system whereas others allow you to create a storage object on top of a specific LockBytes. Those storage
object that are attached to a real file system entity also support an interface called IRootStorage which is used
primarily in low-memory save situation. In any case, a stream object implements the IStream interface, and
such a pointer is generally obtained by calling a member function in the IStorage interface.

The section "Compound File Objects and Interfaces" below describes the exact APIs through which you
obtain interface pointers, describes the ILockBytes, IStorage/IRootStorage, and IStream interfaces, and
highlights the differences between the specification of Structured Storage (that is, the interfaces) and the
Compound File implementation in OLE 2.0. Note also that all storage-related interfaces are defined in
STORAGE.H and derive from IUnknown; complete details on their parameters and return values are
described in the OLE 2.0 Programmer's Reference.
Element Naming
Storage and streams are identified by a name that can be up to 32 characters long with the exception of a root
storage associated with a disk file that may have a name as long as the file system allows. The name of a root
storage must obey the restrictions of the file system, otherwise the name may contain any characters above
ASCII 32 with the exception of ".", "\", "/", ":", and "!". Characters below ASCII 32 are reserved for system
use with the exception of ASCII 3 which is for exclusive use by a compound document container application
for marking special elements, which won't be a topic in this chapter. Compound files store the name as
provided by the caller with no conversion to upper or lower case, but all comparisons made on the names
under Windows 3.1 are case-insensitive.

The actual names of elements in compound files are generally not intended to be shown directly to an end
user and therefore need not be localized. When it becomes necessary in a future release of Windows there
will be standard place to store a localized user-readable name.
Access Modes
Streams and storage objects support access modes as any traditional file, indicated through STGM_* flags,

1Really, I'm not trying to pound this into your head...well, maybe.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 6 :

many of which translate directly into OF_* flags that OLE 2.0's compound file implementation passes
directly down to the Windows OpenFile function:

Structured Storage Flag Definition using OpenFile Flags
STGM_READ (default) OF_READ
STGM_WRITE OF_WRITE
STGM_READWRITE OF_READWRITE
STGM_SHARE_DENYNONE OF_SHARE_DENY_NONE
STGM_SHARE_DENYREAD OF_SHARE_DENY_READ
STGM_SHARE_DENYWRITE OF_SHARE_DENY_WRITE
STGM_SHARE_EXCLUSIVE OF_SHARE_EXCLUSIVE
STGM_CREATE OF_CREATE

As with OpenFile, any of these flags can be OR'd together providing the same effects on the compound
file as they would have with any other traditional file.

OLE 2.0's compound files support a few other flags with special functions above traditional file I/O:

Structured Storage Flag Function
STGM_DIRECT (default) Opens the element for direct access.
STGM_TRANSACTED Opens the element in transacted mode; changes are

buffered and not saved until the element is committed.
OLE 2.0 only supports transactioning on storages.

STGM_FAILIFTHERE (default) Prevents overwrites.
STGM_CONVERT (storages only) Allows an application to convert any existing file (or

stream or LockBytes) into a storage that contains a
single stream named "CONTENTS" where the stream
contains the exact data in the original file. This allows
an application to use compound file APIs to open any
file, only concerning itself with the differences once the
file is open as a storage. If the file is opened with
STGM_DIRECT, the old file is immediately converted
on disk, and therefore STGM_CONVERT always
required STGM_WRITE.

STGM_DELETEONRELEASE Deletes the file from the disk when ::Release on the
storage object managing that file reduces the reference
count to zero. Highly useful for temporary files.

STGM_PRIORITY Allows an application to reduce the cost of opening a
storage in transacted mode by pre-reading specific
streams and excluding them from being buffered. This
rarely used feature is described in further detail in the
OLE 2.0 Programmer's Reference.

Transacted Storages

The most interesting, and certainly the most powerful, of these modes is STGM_TRANSACTED. When you
open a storage in transacted mode, the compound file implementation does not make any changes to the
actual disk file (or LockBytes) until you commit those changes (see IStorage::Commit). Instead, any changes
are recorded in memory inside a copy of the storage's structure. To reduce overall memory use, a snapshot
copy of the element in the disk file is not made until a change is made to that element, that is, very little
memory is used if you open a file in transacted mode and never make any changes. Much more memory is
used, of course, if you make a one-byte modification to every stream since that requires a snapshot of each
stream to exist in memory.

When a transacted storage is committed, the snapshot copies of the modified elements are written to disk.
If the transacted storage is released (IStorage::Release) or reverted (IStorage::Revert) the modified copies are
discarded and the storage is put back into a state as if it were just opened.

Any storage object may be opened in transacted mode, regardless of the mode of its parent storage, that
is, if you open a root storage with STGM_DIRECT you may open a sub-storage with STGM_TRANSACTED
and only that sub-storage is transacted. In other words, only when the sub-storage is committed will there be

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 7

any change in the outer file opened in direct mode.
When multiple levels of storages are opened in transacted mode, committing changes notifies the

immediate parent of the committed storage. This in turn becomes an transacted change in that parent, that is,
the changes percolate upwards. Only when the highest transacted storage is committed are all those changes
actually saved permanently.

Transacted changes reflect any operations you might perform on a storage through the IStorage interface.
For example, newly created storages or streams are created in memory and not reflected to disk until the
outermost commit occurs. Likewise moving, renaming, or destroying elements has no permanent effect on
the physical device until that final commit. Another interesting feature of a transacted storage is that you may
open a storage as read-only transacted and manipulate that storage as if it were read-write: the only operation
you are barred from is a commit.

Use of transacted storage enables easier file sharing. Two or more different applications, or different
users on a network, may open the same transacted storage with read-write permissions but not with exclusive
access. When the application commits that storage (that is, when the user saves) the application tells the
storage to only commit whatever is current, that is, do not commit changes to those parts of the storage that
have been modified by another user since the file was originally opened.

Transacted mode enables a new technique in application design. Since most changes made to storages
and streams are recorded in memory, writing directly to a transacted storage or stream is only slightly slower
than writing directly to memory. For any block of bytes that you would normally access using a memory
pointer, you could use a stream. By doing so you gain a number of benefits:
· Writing past the end of the stream automatically expands the stream instead of causing a UAE.

· Saving the data requires a simple commit on the storage in which the stream lives instead of copying
the data from your own memory structures into the stream before you do the commit.

· Undo is a simple matter of reverting changes. You can implement multiple levels of Undo by
duplicating the streams at appropriate intervals, letting the compound file implementation worry about
memory allocation and copying the data.

There are cases, of course, where a memory structure contains fields like pointers that make no sense to
save persistently, so you would still need a translation from the memory structure to the file structure at
commit time. However, for even small structures that are persistent representations this technique can save
you from keeping the same data in a memory structure–when you need it, load from a stream, when you
change it, write to the stream.
Incremental Access
An incremental save feature is one of the end user's favorite time-saver–instead of rewriting the entire file
every time the user says File/Save, you only save the bits that actually changed. For example, adding one
tenant to a page in Patron should only save a modification of the page header and the information for the new
tenant instead of rewriting the entire page or the entire file. As we explored earlier in this chapter, providing
such a feature can mean a lot of design and coding work on your part if you stuck with traditional file I/O for
your storage.

Making simple changes to a few values in a structure has always been a cheap incremental operation
where just that structure needs modification. However, when you shrink, enlarge, move, add, or delete
elements, things can get extremely tedious if you are implementing this on your own. Since compound files
isolate you from the details about the allocating or freeing space in the file, your modifications to any element
do no affect any other element.

When a compound file needs to expand a stream to accommodate more data, it finds the required amount
of space somewhere in the file (either in previously freed regions or at the end of the file) and reserves it as
part of the original stream. The data and actual location of the original stream remain the same as the stream
expands into the newly allocated region. Since no other stream or storage is affected by this expansion there
is no need to make any further changes to the physical file. In the same manner, if you add a new stream or
storage to an existing storage, the space for that new element as well as any space needed to update the
storage's directory is either recycled from free space or allocated at the end of the file. No other elements
need to move or change in any way to accommodate the new addition. Deleting any element is a simple
matter of marking that space as free, allowing it to be overwritten at a later time by any other element.

Compound files make incremental saves the norm and full, compact saves the exception. In normal

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 8 :

operation, a compound file will eventually become fragmented internally which can make the file larger than
necessary. A full save operation copies all the data from the existing file into a new file which defragments
all the streams and storages, greatly reducing the wasted space in the file. As an example of how this is done
we'll implement a File Manager extension called Smasher in the "Compound File Defragmentation" section at
the end of this chapter.

Compound files not only provide for incremental saves, but for the more generic incremental access.
This is most important for compound document objects such that when activated for editing they are given a
storage object from which they only need to read as little data as they need to perform their editing tasks.
When asked to save they only need to write as much data has changed, nothing more. In OLE 1.0, all of the
object's data had to be loaded into global memory and passed back and forth via DDE: when the container
loaded the object all the data went into memory; when the object needed to save, it put all the data back into
memory again. Such transfers were slow and memory-hungry. Compound files, on the other hand, take very
little memory to actually transfer since the element are sharable across process boundaries.

Sharable Elements
A most important feature of structure storage that benefits data transfer and compound document
implementation is that storages and streams can be marshaled across process boundaries. This means that you
can use a storage or stream object to transfer data between applications instead of being continually forced
into global memory. With a storage or stream object, the data can live on the disk until it becomes necessary
by whoever consumes that data; at that time, the consumer can load the data directly from disk through the
object.

We will explore the implications of this benefit in later chapters. Chapter 6, for example, shows how
OLE 2.0's Uniform Data Transfer mechanisms can all use compound file elements to transfer literally
anything. Something like a large bitmap that always lives on disk is best transferred such that it remains on
disk; since data transfer can use compound files as a transfer medium in addition to many others, the source
of the data can choose the best medium for transport.

Chapter 9 and 10 show how a storage object is used to transfer embedded object data between container
and server. Structured storage was originally created to solve the specific problem of OLE 1.0 where all
embedded object data had to be loaded into global memory, exchanged via DDE messages, and possibly
copied on the receiving end. This resulting in multiple copies of the data existing at once which brought any
system to its knees with large bitmaps. Embedded object in the OLE 1.0 model always had to read and write
their data to global memory and pass it to the container who was responsible for placing it on disk. When the
container reloaded the object, it had to read the entire object data from disk into memory and pass it to the
object. All of this was very slow and inefficient.

With structured storage, OLE 2.0 containers create an IStorage instance for each embedded object.
Creating any new storage uses little memory, and if the storage is direct and lives on disk, then very little
memory will ever be used. In any case a container hands that storage to the embedded object who becomes
solely responsible for loading and saving itself to that storage. This effectively transfers data directly between
the embedded object and the container's document file, bypassing container code completely. Since the
embedded object has the entire storage to itself, it benefits from incremental access–it only needs to load what
is necessary to display or edit the data, and benefits from incremental saves like any other storage user.

Compound Files Objects and Interfaces
As mentioned before, compound files are built on three objects: storages, streams, and LockBytes, that
support the IStorage (possibly IRootStorage), IStream, and ILockBytes interfaces respectively. Each object
handles specific functions within the compound file implementation. The interfaces actually specify more
functionality than is implemented in OLE 2.0 so the sections below will point out what features are not
available. Also note that when these sections list various storage-related APIs, those prefixed with "Stg" are
found in STORAGE.DLL and prototyped in STORAGE.H; otherwise they exist in OLE2.DLL and are
prototypes in OLE2.H.
Storage Objects and the IStorage Interface
A storage object is like a directory which may contain any number of storages (subdirectories) and any
number of streams (files), but in itself does not hold any data. Each storage object supports the IStorage
interface described in Table 3-1. Since any sub-storage it a storage in itself, like a directory is always a
directory, they may themselves contain more storages and more streams ad nauseam until you deplete your
available disk space. Each storage has access rights (read, write, share, etc.), a feature lacking in MS-DOS

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 9

directories. A storage object can enumerate its elements or copy, move, rename, delete, and change times on
an element. A storage gives you a programmatic equivalent of COMMAND.COM functions which is
generally lacking in traditional file I/O libraries.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 10 :

Table 3-1: The IStorage Interface
IStorage Member Equivalent Description
Release none Closes the storage. For a root storage, closes the compound file

it represents. If the storage is opened in transacted mode,
Release also implies a Revert.

CreateStream OpenFile Creates and opens a stream within the storage
OpenStream OpenFile Opens an existing stream.
CreateStorage mkdir, chdir Creates and opens a new sub-storage.
OpenStorage chdir Opens an existing storage.
CopyTo copy Copies the entire contents from the storage into another

storage. The layout of the destination storage may differ.
Commit none Insures that all changes made to the storage open in transacted

mode are reflected on the device.
Revert none Discards any changes made to the storage opened in transacted

mode since the last Commit.
EnumElements dir Returns an IEnumSTATSTG object that enumerates the sub-

storages and streams directly contained in the storage.
MoveElementTo copy, delete Moves a sub-storage or a stream from the storage into another

storage. May move or copy the element.
DestroyElement delete, deltree1 Removes a specified sub-storage or stream from within the

storage. If a sub-storage is destroyed then all elements
contained within it are also destroyed.

RenameElement rename Changes the name of a stream or sub-storage.
SetElementTimes none Sets the modification, last access, and creation date and time of

a sub-storage or stream, subject to file system support.
SetClass none Associates a CLSID with the storage which can be retrieved

with Stat. Allows anyone to know who might be able to
manipulate the contents of the storage.

SetStateBits none Marks the storage with various flags defining how other agents
might be able to treat this storage.

Stat varies Retrieves statistics for the storage such as name, create,
modify, access times, etc.

Compound File Implementation of storages: OLE 2.0 implements complete storages that support
transactioning. All member functions of IStorage work as
specified with the exception of ::SetStateBits which has no
behavior. The data for a storage may not be contiguous inside
the file itself.

How you obtain an IStorage pointer on a storage object depends on whether you want a root storage
object or a sub-storage below another storage object. For the latter you call IStorage::CreateStorage. For root
storages OLE 2.0 offers four API, two of which create a new compound file and two that open an existing
file:

StgCreateDocfile2 Opens a new compound file given a filename in the form of a root
storage on the default file system LockBytes. Will generate a
temporary file if no filename is provided. If the file already
exists, this function may either fail or overwrite the existing file,
depending on flags you pass.

StgCreateDocfileOnILockBytes Opens a new compound file on a given LockBytes object but
otherwise acts like StgCreateDocfile.

StgOpenStorage Opens an existing compound file given a filename but will not
create a new file as will StgCreateDocfile.

StgOpenStorageOnILockBytes Opens an existing compound file that exists in the given
LockBytes but otherwise acts like StgOpenStorage.

There are three additional APIs in STORAGE.DLL that are frequently used with the APIs listed above:

1MS-DOS version 6.0.
2Note that the name 'Docfile' is an archaic term for a compound file which has been preserved in these function names for compatibility
with early releases of OLE 2.0.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 11

StgIsStorageFile Tests if a given file contains a compound file.
StgIsStorageLockBytes Tests if a given LockBytes contains a compound file.
StgSetTimes Provides the ::SetElementTimes equivalent for a root storage

without having to open the storage.

A root storage obtained with one of the Stg* APIs above will also support an interface called
IRootStorage in addition to IStorage. You can obtain a pointer to
this interface by calling IStorage::QueryInterface with
IID_IRootStorage. IRootStorage contains one member function
(besides IUnknown, of course) called SwitchToFile that is
described below in "Low Memory Save Operations."

Once you have a pointer to an IStorage interface you generally use that storage object by calling IStorage
member functions to create other sub-storages or streams and to manage elements within the storage. In
general the ::Create/OpenStream and ::Create/OpenStorage members are the most optimized whereas other
members are not. For example, you will see much better performance by storing a table of your storage's
elements in a stream rather than relying on ::EnumElements. You should also make judicious use
of ::MoveElementTo, ::RenameElement, and ::DestroyElement, making sure that you make few calls to these
functions during performance-critical operations.

A number of the Stg* APIs and interface functions have some extra parameters to deal with transaction
optimizations when a storage object (root or otherwise) is opened with STGM_TRANSACTED. The
optimizations allow an application to exclude specific elements of a storage from being transacted although
the entire storage is opened transacted. By excluding such elements, you reduce the overall amount of
memory necessary to record changes to your data. These exclusions operate along with the
STGM_PRIORITY flag for which you should refer to the OLE 2.0 Programmer's Reference. The topic of
optimizations and exclusions is not treated in this chapter.

You can also pass an IStorage pointer to a few other functions in OLE2.DLL that help applications and
objects storing their data in compound files to mark those files in such that an external agent could look at
that storage and get an idea who might be able to load or edit the contents. We'll see where to call some of
these APIs later when we make use of compound files:

WriteClassStg Serialize a CLSID into an OLE-controlled stream that identifies
the application or object writing other data.

ReadClassStg Load the CLSID previously written with WriteClassStg.
WriteFmtUserType Serialize a clipboard format and a user-readable name describing

the format of the contents of the storage. This could be used by
another application to see what sort of format might be contained
in your streams and perhaps load them.

ReadFmtUserType Reads the clipboard format and the string previously written with
WriteFmtUserType.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 12 :

Stream Objects and the IStream Interface
A stream is the equivalent of standard files but exposed through the IStream interface shown in Table 3-2. An
IStream pointer to a stream in a compound file is always obtained through IStorage::CreateStream or
IStorage::OpenStream although there are a few OLE 2.0 APIs for obtaining a stream object outside of a
compound file as well:

CreateStreamOnHGlobal Builds a stream object on a piece of global memory.
GetHGlobalFromStream Returns the global memory handle used in a stream created with

CreateStreamOnHGlobal.
CreateStreamOnFile Builds a stream object on any existing file handle.
These functions in OLE2.DLL are generally used to serialize some data to a stream that we can pass to

another process. In those situations the stream is being used as a
generic transfer medium and not for file-related storage.

Many stream functions equate directly to existing file functions so most code that uses functions like
_lread and _lwrite are easily rewritten to handle a stream. Each stream in itself has access rights (read, write,
share, etc.) and a single seek pointer just like files. However, since a stream object does not use a file handle,
you can open a stream and leave it open with no penalty to the underlying file system. If you maintain an
open read-only stream, you don't exclude other parts of your application from opening that stream with write
permissions on a temporary basis, although you will prevent other code from opening the stream for exclusive
access.

Table 3-2: The IStream Interface
IStream Member File Equivalent 1 Description
Release _lclose Closes the stream for the user of the IStream pointer through

which it's called.
Read _lread Reads a given number of bytes from the current seek pointer

into memory.
Write _lwrite Writes a number of bytes from memory to the stream starting at

the current seek pointer.
Seek _llseek Moves the seek pointer to a new offset from the beginning of

the stream end of the stream, or the current position.
SetSize _chsize Pre-allocates space for the stream but does not preclude writing

outside that stream (see below).
CopyTo _fmemcpy Copies the a number of bytes from the current seek pointer in

the stream to the current seek pointer in another stream.
Commit none Insures that all changes made to the stream open in transacted

mode are reflected on the device (not supported in OLE 2.0).
Revert none Discards any changes made to the stream opened in transacted

mode since the last Commit (not supported in OLE 2.0).
LockRegion _locking Restrict access to a byte range in the stream instead of the

stream as a whole (not supported in OLE 2.0).
UnlockRegion _locking Frees restrictions set with LockRegion (not supported in OLE

2.0).
Stat _stat Retrieves statistics for the stream such as name, create, modify,

access times, etc.
Clone _dup Creates a new stream object with an independent seek pointer

that references the same actual bytes.
The ::Read, ::Write, and ::Seek members of IStream are the most optimized for performance in the entire

compound file implementation. These will show speeds
lacking traditional MS-DOS operations by only a few percent.
Other operations like ::CopyTo and ::SetSize are potentially
expensive and should be used with such caution.

Inside the compound file the data contained in a stream is not necessarily contiguous, just like the
physical location of the contents of an MS-DOS file on a hard disk may be in widely separated sectors. From
the view of the streams user, the stream is contiguous–you let the stream implementation worry about exact
placement.

1Both Windows API and C run-time functions are shown here.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 13

Compound File Implementation of streams: OLE 2.0 does not implement stream transactioning nor
region locking, that is, ::Commit, ::Revert, ::LockRegion, and ::UnlockRegion are no-ops. In addition, the
IStream interface allows streams to be 264 bytes, that is, a single read or write could transfer 264 bytes at a
time and the seek pointers is a 64-bit value. OLE 2.0's implementation is limited to 232 byte transfers and
uses a 32-bit seek pointer.
LockBytes Objects and the ILockBytes Interface
All root storage objects (and only root storage objects) are built on top of some byte array represented by a
LockBytes object that implements the ILockBytes interface shown in Table 5-3. LockBytes isolate the root
storage from any concern about how the bytes actually get to their final destination on whatever storage
device the LockBytes accesses. For example, a LockBytes built on the file system writes bytes to a file; a
LockBytes on global memory writes data to some memory block.

Table 5-3: The ILockBytes Interface
ILockBytes Member Description
ReadAt Reads a number of bytes from a given location in the byte array. If there are

not enough bytes on the device to satisfy the request, Read returns what can be
read.

WriteAt Writes a number of bytes to a given location in the bytes array, expanding the
allocations on the device to accommodate the request.

Flush Ensures that any internal buffers in the LockBytes are written to the physical
device.

SetSize Pre-allocates a specific amount of space on the device.
LockRegion Locks a range of bytes on the device for write access or exclusive access.
UnlockRegion Reverses a LockRegion call.
Stat Fills a STATSTG structure with information about the LockBytes, which

reflects information about the device.
Compound File Implementation of LockBytes: OLE 2.0's LockBytes implementation supports the

entire interface, region locking included.
A LockBytes object that writes to the default file system is used inherently when you create a compound

file with StgCreateDocfile or StgOpenStorage. The specific implementation of this LockBytes is not
available for use outside this context. OLE 2.0 also provides a standard LockBytes built on global memory
that you manage through two APIs in OLE2.DLL:

CreateILockBytesOnHGlobal Creates LockBytes object on a piece of global memory that either
this function or the caller may allocate.

GetHGlobalFromILockBytes Returns the global memory handle in use by a LockBytes from
CreateILockBytesOnHGlobal.

If you need to create a compound file on some other device than the file system or global memory, you
may choose to implement your own LockBytes. For example,
you may want to send the data across a network to a database
without ever having to bother the storage object about the details.
In this case you implement your LockBytes however you want (as
long as you can provide an ILockBytes function table) and call
StgCreateDocfileOnILockBytes or StgOpenStorageOnILockBytes
to obtain an IStorage pointer. This IStorage is indistinguishable
from any IStorage built on a different LockBytes.

While the read and write mechanisms in a LockBytes are similar to those in a stream, a LockBytes
maintains no seek pointer and is instead always told from where to read or where to write. In addition, the
actual physical location of the bytes may not be contiguous, that is, they may span multiple physical files,
multiple global memory allocations, multiple database fields, etc. The purpose of the LockBytes object is to
isolate any storage and stream objects from the physical aspects of the byte device.

Container Applications and Compound Files in Memory

CreateILockBytesOnHGlobal and GetHGlobalFromILockBytes allow an application to create a
compound file image in memory and copy that memory anywhere else. The most common case

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 14 :

where this technique is useful is for OLE 2.0 container applications that do not wish to use
compound files for their own documents since those applications are still required to provide some
storage object to every embedded object. In this case, the container can first call
CreateILockBytesOnHGlobal then call StgCreateDocfileOnILockBytes to get storage object built on
memory. Once the embedded object is saved in that storage, you can GetHGlobalFromILockBytes,
GlobalLock the handle, and write the contents of that memory anywhere you desire, into your own
file format if desired. When reloading the embedded object you would allocate memory, load the
contents of the file record into that memory, CreateILockBytesOnHGlobal, and call
StgOpenStorageOnILockBytes to get a storage object for that embedding.

The ::Stat Member Function and STATSTG
Each interface contains a member function called ::Stat which is essentially identical to the standard ANSI C
run-time _stat function. ::State returns its information in a STATSTG structure: the name of the element,
creation and modification times, the type of object (storage, stream, etc.), the access mode under which the
object is open, and whether or not the object supports region locking as described through various interfaces:

typedef struct FARSTRUCT tagSTATSTG
 {
 char FAR *pwcsName; //Name of the element
 DWORD type; //Type of element
 ULARGE_INTEGER cbSize; //Size of element
 FILETIME mtime; //Last modification date/time
 FILETIME ctime; //Creation date/time
 FILETIME atime; //Last access date/time
 DWORD grfMode; //Mode element is opened in
 DWORD grfLocksSupported; //Support region locking?
 CLSID clsid; //CLSID of the element.
 DWORD grfStateBits; //Current state
 DWORD reserved;
 } STATSTG;

This structure is also used to enumerate elements within a storage as shown in the next section through an
interface called IEnumSTATSTG. The OLE 2.0 Programmer's Reference has complete details on the
STATSTG structure. However, the one important point to remember about using this structure is that the
storage DLL allocates the string pointed to by pwcsName is allocated using the task allocator from
CoGetMalloc. You as the user of the STATSTG structure are responsible to free that string using the task
allocator yourself:

[Code to get a STATSTG structure in the st variable]
LPMALLOC pIMalloc;

CoGetMalloc(MEMCTX_TASK, &pIMalloc);
pIMalloc->Free((LPVOID)st.pwcsName);
pIMalloc->Release();

Note that if your call to CoInitialize worked on startup, then calls to CoGetMalloc will not fail if you always
pass in a valid MEMCTX_ flag and a valid pointer to your LPMALLOC variable. Therefore there is no need
in this code fragment to check the return value of CoGetMalloc.

Compound Files in Practice
Now that we've thoroughly beat into the deep earth all the interfaces and APIs related to compound files, we
can look at how to actually apply it all to implementing file functions in an application. For this chapter I
have modified the Chapter 2 version of Schmoo to write its data into a compound file, demonstrating the
simplest use of compound files: open, read or write, then close. This version of Schmoo also retains
compatibility with old versions of its files using the conversion feature of compound files allowing it to treat
old files as storages.

I have also added compound file support into Patron that has a much more complicated storage scheme,
since we implement part of the storage model shown before in Figure 5-3. Since Patron files exercise
transactioning and incremental saves, they will, over time, become fragmented. A program called Smasher,
which is really a File Manager Extension DLL, is presented at the end of this chapter to demonstrate how to
defragment a compound file.

This chapter also shows a modification of the object DLL version of Schmoo's Polyline to deal with
storage; the changes made here apply directly to an implementation of Polyline as a compound document
object in Chapter 10. This implementation will show exactly what is required of a compound document

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 15

object, be it in a server DLL or server EXE, as far as storage is concerned.
Some applications will want to use Compound Files as a stand-alone technology, powerful as it is,

without doing anything related to other OLE 2.0 technologies like component objects, data transfer, or
compound documents. At a minimum, compound file usage requires COMPOBJ.DLL and STORAGE.DLL.
The latter's necessity is obvious, but the former is a little more obscure. COMPOBJ.DLL is required since
functions like IStorage::Stat will internally call CoGetMalloc (see "The ::Stat Member Function and
STATSTG" above). Therefore an application that uses compound files must call CoBuildVersion and
CoInitialize on startup and CoUninitialize on shutdown as explained in "The New Application for Windows
Objects" in Chapter 4. However, since storage objects always live in DLLs, no marshaling will occur so a
SetMessageQueue(96) call is not necessary.

Simple Storage: Schmoo
Let's start off with small modifications to Schmoo as shown in Listing 5-1. The changes are simple and only
affect two functions: instead of opening a regular file with which to read or write data we open a root storage.
Instead of using file I/O functions like _lread and _lwrite we obtain a stream pointer and use IStream member
functions. The simplest uses of compound files can be reduced down to a few calls to APIs and interface
members. Note that Schmoo is now also a component object user since storage and stream objects are
considered component objects; therefore Schmoo must CoInitialize, etc.

DOCUMENT.CPP

[Other code unaffected]

/*
 * CSchmooDoc::ULoad
 *
 * Purpose:
 * Loads a given document without any user interface overwriting the
 * previous contents of the Polyline window. We do this by opening
 * the file and telling the Polyline to load itself from that file.
 *
 * Parameters:
 * fChangeFile BOOL indicating if we're to update the window title
 * and the filename from using this file.

Listing 5-1: Modifications to the Schmoo program for simple use of Compound Files.

 * pszFile LPSTR to the filename to load, NULL if the file is
 * new and untitled.
 *
 * Return Value:
 * UINT An error value from DOCERR_*
 */

UINT CSchmooDoc::ULoad(BOOL fChangeFile, LPSTR pszFile)
 {
 HRESULT hr;
 LPSTORAGE pIStorage;

 if (NULL==pszFile)
 {

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 16 :

 //For a new untitled document, just rename ourselved.
 Rename(NULL);
 m_lVer=VERSIONCURRENT;
 return DOCERR_NONE;
 }

 /*
 * If this is not a Compound File, open the file using STGM_CONVERT
 * in TRANSACTED mode to effectively see old files as a storage with
 * one stream called "CONTENTS" (which is conveniently the name we use
 * in the new files). We must use STGM_TRANSACTED here or else
 * the old file will be immediately converted on disk: we only want
 * a converted image in memory from which to read. In addition,
 * note that we need STGM_READWRITE as well since conversion is
 * inherently a write operation.
 */

 pIStorage=NULL;

 if (FAILED(StgIsStorageFile(pszFile)))
 {
 hr=StgCreateDocfile(pszFile, STGM_TRANSACTED | STGM_READ //WRITE
 | STGM_CONVERT | STGM_SHARE_EXCLUSIVE, 0, &pIStorage);

 if (FAILED(hr))
 {
 //If we were denied write access, try to load the old way
 if (STG_E_ACCESSDENIED==GetScode(hr))
 m_lVer=m_pPL->ReadFromFile(pszFile);
 else
 return DOCERR_COULDNOTOPEN;
 }
 }
 else
 {
 hr=StgOpenStorage(pszFile, NULL, STGM_DIRECT | STGM_READ
 | STGM_SHARE_EXCLUSIVE, NULL, 0, &pIStorage);

 if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;
 }

 if (NULL!=pIStorage)
 {
 m_lVer=m_pPL->ReadFromStorage(pIStorage);
 pIStorage->Release();

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 17

 }

 if (POLYLINE_E_READFAILURE==m_lVer)
 return DOCERR_READFAILURE;

 if (POLYLINE_E_UNSUPPORTEDVERSION==m_lVer)
 return DOCERR_UNSUPPORTEDVERSION;

 if (fChangeFile)
 Rename(pszFile);

 //Importing a file makes things dirty
 FDirtySet(!fChangeFile);

 return DOCERR_NONE;
 }

/*
 * CSchmooDoc::USave
 *
 * Purpose:
 * Writes the file to a known filename, requiring that the user has
 * previously used FileOpen or FileSaveAs in order to have a filename.
 *
 * Parameters:
 * uType UINT indicating the type of file the user requested
 * to save in the File Save As dialog.
 * pszFile LPSTR under which to save. If NULL, use the current name.
 *
 * Return Value:
 * UINT An error value from DOCERR_*
 */

UINT CSchmooDoc::USave(UINT uType, LPSTR pszFile)
 {
 LONG lVer, lRet;
 UINT uTemp;
 BOOL fRename=TRUE;
 HRESULT hr;
 LPSTORAGE pIStorage;

 if (NULL==pszFile)
 {
 fRename=FALSE;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 18 :

 pszFile=m_szFile;
 }

 /*
 * Type 1 is the current version, type 2 is version 1.0 of the Polyline
 * so we use this to send the right version to CPolyline::WriteToFile.
 */

 switch (uType)
 {
 case 0: //From Save, use loaded version.
 lVer=m_lVer;
 break;

 case 1:
 lVer=VERSIONCURRENT;
 break;

 case 2:
 lVer=MAKELONG(0, 1); //1.0
 break;

 default:
 return DOCERR_UNSUPPORTEDVERSION;
 }

 /*
 * If the version the user wants to save is different than the
 * version that we loaded, and m_lVer is not zero (new document),
 * then inform the user of the version change and verify.
 */
 if (0!=m_lVer && m_lVer!=lVer)
 {
 char szMsg[128];

 wsprintf(szMsg, PSZ(IDS_VERSIONCHANGE), (UINT)HIWORD(m_lVer)
 , (UINT)LOWORD(m_lVer), (UINT)HIWORD(lVer), (UINT)LOWORD(lVer));

 uTemp=MessageBox(m_hWnd, szMsg, PSZ(IDS_DOCUMENTCAPTION),
MB_YESNOCANCEL);

 if (IDCANCEL==uTemp)
 return DOCERR_CANCELLED;

 //If the user won't upgrade versions, revert to loaded version.
 if (IDNO==uTemp)

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 19

 lVer=m_lVer;
 }

 /*
 * For 1.0 files, still use the old code. For new files, use
 * storages instead
 */
 if (lVer==MAKELONG(0, 1))
 lRet=m_pPL->WriteToFile(pszFile, lVer);
 else
 {
 hr=StgCreateDocfile(pszFile, STGM_DIRECT | STGM_READWRITE
 | STGM_CREATE | STGM_SHARE_EXCLUSIVE, 0, &pIStorage);

 if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;

 //Mark this as one of our class
 WriteClassStg(pIStorage, CLSID_SchmooFigure);

 //Write user-readable class information
 WriteFmtUserTypeStg(pIStorage, m_cf, PSZ(IDS_CLIPBOARDFORMAT));

 lRet=m_pPL->WriteToStorage(pIStorage, lVer);
 pIStorage->Release();
 }

 if (POLYLINE_E_NONE!=lRet)
 return DOCERR_WRITEFAILURE;

 //Saving makes us clean
 FDirtySet(FALSE);

 //Update the known version of this document.
 m_lVer=lVer;

 if (fRename)
 Rename(pszFile);

 return DOCERR_NONE;
 }

To write a simple file with a single stream, Schmoo performs the following steps where steps 1, 2 and 6 occur
in CSchmooDoc::ULoad (DOCUMENT.CPP) and steps 3, 4, and 5 occur in CPolyline::WriteToStorage
(POLYLINE.CPP), a new function added to CPolyline to handle storage objects in addition to WriteToFile
that deals in file handles:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 20 :

1. StgCreateDocfile using STGM_DIRECT | STGM_CREATE creates a new compound file,
overwriting any that already exists. This returns an IStorage pointer for this new file. Since we use
STGM_DIRECT there is no need to later call IStorage::Commit.
2. WriteClassStg and WriteFmtUserTypeStg sets various flags on the storage and saves
standard class information.
3. IStorage::CreateStream using the name "CONTENTS" which returns an IStream pointer.
4. IStream::Write saves the data, passing a pointer to and size of the data to go into the
stream.
5. IStream::Release closes the stream, matching IStorage::CreateStream.
6. IStorage::Release closes the storage, matching StgCreateDocfile.

In a fashion similar Schmoo makes the following calls to open and read the previously saved data during
a File Open operation. Steps 1, 2, 3, and 7 happen in CSchmooDoc::ULoad and step 4, 5, and 6 happen in
CPolyline::ReadFromStorage which handles storage objects as opposed to CPolyline::ReadFromFile:
1. StgIsStorageFile determines if the filename refers to a compound file created by the OLE
2.0 (or compatible) implementation of structured storage. This function looks for a signature at the
beginning of the disk file to determine whether or not it can be read as a compound file.
2. If the file is a compound file, StgOpenStorage opens the storage for reading returning an
IStorage pointer. Otherwise StgCreateDocfile using STGM_TRANSACTED | STGM_CONVERT
opens a non-compound file as a storage object returning an IStorage pointer.
3. At the application's option, ReadClassStg loads the CLSID previously saved from
WriteClassStg and IsEqualCLSID compares the expected class with the one in the file. If the two
don't match, you didn't write this file.
4. IStorage::OpenStream on the name "CONTENTS" returns the IStream pointer for the
data.
5. IStream::Read loads the data from the file into our memory structures.
6. IStream::Release closes the stream, matching the IStorage::OpenStream call.
7. IStorage::Release closes the storage, matching the StgOpenStorage or StgCreateDocfile
calls.

The most interesting aspects of this code is the use of the STGM_CONVERT flag when dealing with an
old file format and the correspondence between stream operations and traditional file operations, which are
the topics of the next two sections. Note also that Schmoo, while it writes a CLSID to the storage, does not
check this during File Open using ReadClassStg because I want Schmoo and Component Schmoo
(CoSchmoo, modified for storage objects a little later) to retain file compatibility. Since the two applications
write different CLSIDs into their storages we can just skip the ReadClassStg step. Using ReadClassStg is just
an extra check you can perform to really validate a file before loading potentially large amounts of data.
Pulling Rabbits from the Hat with STGM_CONVERT
Schmoo is capable of reading and writing two different versions of its files; in Chapter 2 both formats were
typical MS-DOS files. For this chapter and those beyond, Schmoo will maintain its version 2.0 file format in
a compound file instead, but still remain compatible with old files (both version 1.0 files and the version 2.0
files generated with the Chapter 2 version). Schmoo still retains the capability to write an old file format,
simply by virtue of preserving the old code. However, reading files of either format has changed
significantly.

We could approach the problem of reading multiple formats in two ways. The first would be to test the
file using StgIsStorageFile and failing that test, open and read that file using traditional file I/O functions.
Doubtless you already have code that handles such an operation and I encourage you to keep it if works well.
The second approach which I've used in Schmoo to demonstrate the technique, is to use the
STGM_CONVERT flag.

When Schmoo sees a non-compound file when loading it calls StgCreateDocfile passing
STGM_CONVERT instead of STGM_CREATE. The STGM_CONVERT flag causes OLE to open the file as
if it were a storage object containing a single stream named "CONTENTS".

LPSTORAGE pIStorage;
HRESULT hr;

hr=StgCreateDocfile(pszFile, STGM_TRANSACTED | STGM_READWRITE
 | STGM_CONVERT | STGM_SHARE_EXCLUSIVE, 0, &pIStorage);

if (FAILED(hr))

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 21

 {
 if (STG_E_ACCESSDENIED==GetScode(hr))
 [Try loading the file using traditional file I/O]
 }

If this operation succeeds, the HRESULT returned from StgCreateDocfile will contain
STG_S_CONVERTED which is not equal to NOERROR but which does not mean an error occurred.
Therefore we use the FAILED macro to actually test success.

NOTE: When using StgCreateDocfile for conversion I purposely passed STGM_TRANSACTED |
STGM_READWRITE, but never bother to commit anything. The semantics of STGM_CONVERT in
StgCreateDocfile mean "convert the file now." If you use STGM_DIRECT in this case the old file will
be immediately overwritten with a compound file. By specifying STGM_TRANSACTED you create the
conversion in memory only leaving the disk image unaffected. If you called IStorage::Commit on such a
transacted storage you would then change the actual file on the disk. Since conversion is a potential
write operation, you must specify at least STGM_WRITE along with STGM_CONVERT. If the file is
marked as read-only, however, StgCreateDocfile will fail with STG_E_ACCESSDENIED. In such a
situation you can default to loading the file with old code that only requires read-only access.
Once we have opened this old file as a compound file, we have a storage object (an IStorage pointer)

through which we can treat the file as if it were a compound file. As shown in Listing 5-1, Schmoo passes an
IStorage from either StgCreateDocfile or StgOpenStorage to the same code in the Polyline to read its data
from the stream. It is not a consequence that Schmoo's version 2.0 file format is a storage containing a single
stream named "CONTENTS"–that naming allows the Polyline to read the data from the stream regardless of
how it actually lives on the file system.
Streams vs. Files
The "Stream Objects and IStream Interface" section above attempted to show that there is a strong parallel
between traditional file I/O functions (in both the Windows API and the C run-time library) and the member
functions of the IStream interface. In the Polyline implementation we can see these similarities by comparing
the old ::ReadFromFile function used in the Chapter 2 implementation of Schmoo to the ::ReadFromStorage
function used exclusively in the new version. (Note that ::ReadFromFile is still used in the new version of
Schmoo when the file is marked read-only, restricting our use of STGM_CONVERT.) The two
functions ::ReadFromFile and ::ReadFromStorage are shown below side-by-side to illustrate the utter
similarities between the two implementations:

LONG CPolyline::ReadFromFile LONG CPolyline::ReadFromStorage
 (LPSTR pszFile) (LPSTORAGE pIStorage)
 { {
 OFSTRUCT of; HRESULT hr;
 HFILE hFile; LPSTREAM pIStream;
 POLYLINEDATA pl; POLYLINEDATA pl;
 UINT cb=-1; ULONG cb=-1;
 UINT cbExpect=0; ULONG cbExpect=0;

 LARGE_INTEGER li;

 if (NULL==pszFile) if (NULL==pIStorage)
 return POLYLINE_E_READFAILURE; return POLYLINE_E_READFAILURE;

 hFile=OpenFile(pszFile,&of,OF_READ); hr=pIStorage->OpenStream("CONTENTS", 0
 , STGM_DIRECT | STGM_READ
 | STGM_SHARE_EXCLUSIVE, 0
 , &pIStream);

 if (HFILE_ERROR==hFile) if (FAILED(hr))
 return POLYLINE_E_READFAILURE; return POLYLINE_E_READFAILURE;

 cb=_lread(hFile, (LPSTR)&pl hr=pIStream->Read((LPVOID)&pl
 , 2*sizeof(WORD)); , 2*sizeof(WORD), &cb);

 if (2*sizeof(WORD)!=cb) if (FAILED(hr) || 2*sizeof(WORD)!=cb)
 { {
 _lclose(hFile); pIStream->Release();
 return POLYLINE_E_READFAILURE; return POLYLINE_E_READFAILURE;
 } }

 LISet32(li, 0);
 _llseek(hFile, 0L, 0); pIStream->Seek(li, STREAM_SEEK_SET, NULL);

 [Code here to calculate cbExpect [Code here to calculate cbExpect
 based on the version number] based on the version number]

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 22 :

 cb=_lread(hFile, (LPSTR)&pl hr=pIStream->Read((LPVOID)&pl
 , cbExpect); , cbExpect, &cb);
 _lclose(hFile); pIStream->Release();

 if (cbExpect!=cb) if (cbExpect!=cb)
 return POLYLINE_E_READFAILURE; return POLYLINE_E_READFAILURE;

 DataSet(&pl, TRUE, TRUE); DataSet(&pl, TRUE, TRUE);
 return MAKELONG(pl.wVerMin return MAKELONG(pl.wVerMin
 , pl.wVerMaj); , pl.wVerMaj);
 } }

The first difference is that a call to OpenFile has been replaced with a call to OpenStream; we now treat the
storage in which the data lives just like we treated the file system before. All of the old file I/O functions
called with the file handle are then replaced by calls through the IStream pointer instead. A second general
difference is the calling convention imposed by the use of IStream members. Remember that interface
members generally return an HRESULT thereby requiring you to pass pointers to variable in which those
functions return additional information. So instead of a function like _lread that returns the number of bytes
read, we have IStream::Read that returns an HRESULT and fills another variable with the number of bytes
read. Other than that, these two functions are semantically equivalent.

The code above also shows a difference in seeking within a file as opposed to a stream. The structured
storage definition of IStream allows storages and streams to contain up to 264 addressable bytes of data.
Since a stream can be that large, you have to use the LARGE_INTEGER type to pass the seek offset which is
that unfamiliar code in ::ReadFromStorage above:

 LARGE_INTEGER li;

 LISet32(li, 0);
 pIStream->Seek(li, STREAM_SEEK_SET, NULL);

A LARGE_INTEGER has two fields: a DWORD LowPart field and a LONG (signed) HighPart field. The
LISet32 macro sets LowPart to the value specified and performs sign-extension into HighPart. There is also a
ULARGE_INTEGER which is composed of two DWORD parts with an associated ULISet32 macro. The
third parameter to IStream::Seek above could be a ULARGE_INTEGER which receives the seek offset in the
stream before the call. Passing a NULL simply means you're not interested.

The ::CreateStream, ::OpenStream, ::Read, ::Write, and ::Seek members of IStorage and IStream are the
most commonly used, and the most performance optimized functions in the entire compound file
implementation of OLE 2.0. For simple storage uses such as Schmoo, these with only a few others, like
IStream::Seek, may be all you need. Other members are used for more complicated storage models.

Complex Compound Files: Patron
The study of English grammar defines a number a sentence structures. A simple sentence express one idea,
like "The rabbit sat in his form." Compound sentences expresses more than one independent idea, such as
"The rabbit sat in his form and the photographer set up his camera." In such a sentence there is only a vague
notion of concurrency, but no hard evidence. A complex sentence defines such a relationship as in "The
rabbit sat in his form while the photographer set up his camera." A complex-compound sentence is more on
the order of "Although the rabbit had trepidation about most humans, it calmly sat in its form and the
photographer continued to set up his camera."

If we can relate ideas to elements in a OLE 2.0's structured storage model, we can see how these
descriptions of sentences apply to compound files. The simplest use of the model is writing a single stream
into a file using CreateStreamOnFile. When you use a root storage that contains one stream, you've made a
compound file (sentence) where the two elements are related mostly by virtue of them living in the same
place at the same time. When we start adding more streams in the root storage, we make things more
complex–the meaning of the data in one stream may be defined partially or completely by the context of the
data in another stream. As we get even more complex, we start adding sub-storages alongside these streams
that generally don't need any dependency on the streams but do occupy space in the same file. This is the
notion of complex-compound files.

For Patron we'll implement exactly that storage model shown in Figure 5-5 which is the same as that
shown in Figure 5-3 but without the page headers streams or tenants storages since we don't yet have the

Figure 5-5: Exact layout of Patron's compound files in this chapter.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 23

capability to create tenants. Each Patron file is a root storage underneath which lives a stream containing the
device configuration (printer parameters) and a stream containing the list of pages in the file by a DWORD
identifier where the list of IDs stored in the page list defines which ID is page 1, page 2, etc.. Each page is
then stored as a sub-storage itself below the root storage where the name of the page storage is "Page "
appended with the ID. At this time these storages themselves will not contain any other streams or storages,
but will provide the structure in which we can store tenants, either bitmaps and metafiles as we'll see in
Chapter 7 or compound document objects as we'll see starting in Chapter 9.
To accommodate file I/O, Patron has undergone some considerable modifications and additions, the more
important of which are shown in Listing 5-2. For the most part, Patron follows the sequence of steps
described for Schmoo in the previous section with the exception that not everything happens at the same time
or in the same place. Patron is also now a component object user, like Schmoo.

Changes made to DOCUMENT.CPP handle opening and saving the compound file, that is, implementing
File New, File Open, File Save, and File Save As from the main window's point of view (CPatronDoc::ULoad
and CPatronDoc::USave). The document-level code only manages the root storage itself and thus passes that
storage to the CPages object that maintains the actual page list. All stream and sub-storage creation happens
on the pages level. Still, if you follow the code, you will see that Patron generally creates a root storage,
writes streams into it (as well as sub-storages), calls functions like WriteClassStg to identify the file, and calls
IStorage::Release to finally close the file.

DOCUMENT.CPP

[Other code unaffected]

CPatronDoc::~CPatronDoc(void)
 {
 if (NULL!=m_pPG)
 delete m_pPG;

 if (NULL!=m_pIStorage)
 m_pIStorage->Release();

 return;
 }

Listing 5-2: The Patron program using Compound Files for its storage.

/*
 * CPatronDoc::ULoad
 *
 * Purpose:
 * Loads a given document without any user interface overwriting the
 * previous contents of the editor.
 *
 * Parameters:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 24 :

 * fChangeFile BOOL indicating if we're to update the window title
 * and the filename from using this file.
 * pszFile LPSTR to the filename to load. Could be NULL for
 * an untitled document.
 *
 * Return Value:
 * UINT An error value from DOCERR_*
 */

UINT CPatronDoc::ULoad(BOOL fChangeFile, LPSTR pszFile)
 {
 RECT rc;
 HRESULT hr;
 LPSTORAGE pIStorage;
 CLSID clsID;
 DWORD dwMode=STGM_TRANSACTED | STGM_READWRITE |
STGM_SHARE_EXCLUSIVE;

 if (NULL==pszFile)
 {
 //Create a new temp file.
 hr=StgCreateDocfile(NULL, dwMode | STGM_CREATE |
STGM_DELETEONRELEASE
 , 0, &pIStorage);

 //Mark this as one of our class since we check with ReadClassStg below.
 if (SUCCEEDED(hr))
 WriteClassStg(pIStorage, CLSID_PatronPages);
 }
 else
 {
 hr=StgOpenStorage(pszFile, NULL, dwMode, NULL, 0, &pIStorage);
 }

 if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;

 //Check if this is our type of file and exit if not.
 hr=ReadClassStg(pIStorage, &clsID);

 if (FAILED(hr) || !IsEqualCLSID(clsID, CLSID_PatronPages))
 {
 pIStorage->Release();
 return DOCERR_READFAILURE;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 25

 //Attempt to create our contained Pages window.
 m_pPG=new CPages(m_hInst);
 GetClientRect(m_hWnd, &rc);

 if (!m_pPG->FInit(m_hWnd, &rc, WS_CHILD | WS_VISIBLE, ID_PAGES, NULL))
 {
 pIStorage->Release();
 return DOCERR_NOFILE;
 }

 if (!m_pPG->FIStorageSet(pIStorage, FALSE, (BOOL)(NULL==pszFile)))
 {
 pIStorage->Release();
 return DOCERR_READFAILURE;
 }

 Rename(pszFile);

 //Do initial setup if this is a new file, otherwise Pages handles things.
 if (NULL==pszFile)
 {
 //Go initialize the Pages for the default printer.
 if (!PrinterSetup(NULL, TRUE))
 return DOCERR_COULDNOTOPEN;

 //Go create an initial page.
 m_pPG->PageInsert(0);
 }

 m_pIStorage=pIStorage;

 FDirtySet(FALSE);
 return DOCERR_NONE;
 }

/*
 * CPatronDoc::USave
 *
 * Purpose:
 * Writes the file to a known filename, requiring that the user has
 * previously used FileOpen or FileSaveAs in order to have a filename.
 *
 * Parameters:

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 26 :

 * uType UINT indicating the type of file the user requested
 * to save in the File Save As dialog.
 * pszFile LPSTR under which to save. If NULL, use the current name.
 *
 * Return Value:
 * UINT An error value from DOCERR_*
 */

UINT CPatronDoc::USave(UINT uType, LPSTR pszFile)
 {
 HRESULT hr;
 LPSTORAGE pIStorage;

 //Save or Save As with the same file is just a commit.
 if (NULL==pszFile || (NULL!=pszFile && 0==lstrcmpi(pszFile, m_szFile)))
 {
 WriteFmtUserTypeStg(m_pIStorage, m_cf, PSZ(IDS_CLIPBOARDFORMAT));

 //Insure pages are up to date.
 m_pPG->FIStorageUpdate(FALSE);

 //Commit everyting
 m_pIStorage->Commit(STGC_ONLYIFCURRENT);

 FDirtySet(FALSE);
 return DOCERR_NONE;
 }

 /*
 * When we're given a name, open the storage, creating it new if
 * it does not exist or overwriting the old one. Then ::CopyTo from
 * the current to the new, ::Commit the new, then ::Release the old.
 */
 hr=StgCreateDocfile(pszFile, STGM_TRANSACTED | STGM_READWRITE
 | STGM_CREATE | STGM_SHARE_EXCLUSIVE, 0, &pIStorage);

 if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;

 WriteClassStg(pIStorage, CLSID_PatronPages);
 WriteFmtUserTypeStg(pIStorage, m_cf, PSZ(IDS_CLIPBOARDFORMAT));

 //Insure all pages are up-to-date.
 m_pPG->FIStorageUpdate(TRUE);

 //This also copies the CLSID we stuff in here on file creation.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 27

 hr=pIStorage->CopyTo(NULL, NULL, NULL, pIStorage);

 if (FAILED(hr))
 {
 pIStorage->Release();
 return DOCERR_WRITEFAILURE;
 }

 pIStorage->Commit(STGC_ONLYIFCURRENT);

 /*
 * Revert changes on the original storage. If this was a temp file,
 * it's deleted since we used STGM_DELETEONRELEASE.
 */
 m_pIStorage->Release();

 //Make this new storage current
 m_pIStorage=pIStorage;
 m_pPG->FIStorageSet(pIStorage, TRUE, FALSE);

 FDirtySet(FALSE);
 Rename(pszFile); //Update caption bar.

 return DOCERR_NONE;
 }

PAGES.H

class __far CPage
 {
 private:
 DWORD m_dwID; //Persistent DWORD identifier
 LPSTORAGE m_pIStorage; //Sub-storage for this page.

 public:
 CPage(DWORD);
 ~CPage(void);

 DWORD GetID(void);
 BOOL FOpen(LPSTORAGE);
 void Close(BOOL);
 void Update(void);
 void Destroy(LPSTORAGE);
 };

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 28 :

typedef CPage FAR * LPPAGE;

/*
 * Structures to save with the document describing the device
 * configuration and pages that we have. This is followed by
 * a list of DWORD IDs for the individual pages.
 */

typedef struct __far tagDEVICECONFIG
 {
 DEVMODE dm;
 char szDriver[CCHDEVICENAME];
 char szDevice[CCHDEVICENAME];
 } DEVICECONFIG, FAR * LPDEVICECONFIG;

typedef struct __far tagPAGELIST
 {
 UINT cPages;
 UINT iPageCur;
 DWORD dwIDNext;
 } PAGELIST, FAR *LPPAGELIST;

class __far CPages : public CWindow
 {
 [Existing members omitted from this listing]

 LPSTORAGE m_pIStorage; //Root storage o
 //m_hDevMode, m_szDriver, m_szDevice removed

 public:
 [Existing members omitted from this listing]

 BOOL FIStorageSet(LPSTORAGE, BOOL, BOOL); //Was ::New previously
 BOOL FIStorageUpdate(BOOL);

 };

typedef CPages FAR * LPCPages;

//Fixed names of streams in the Pages IStorage
#define SZSTREAMPAGELIST "Page List"
#define SZSTREAMDEVICECONFIG "Device Configuration"

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 29

PAGES.CPP

CPages::CPages(HINSTANCE hInst)
 : CWindow(hInst)
 {
 [Other code omitted from listing]

 m_pIStorage=NULL;
 return;
 }

CPages::~CPages(void)
 {
 //Insure memory is cleaned up in list, and do final IStorage::Release
 FIStorageSet(NULL, FALSE, FALSE);

 [Other code omitted from listing]

 return;
 }

/*
 * CPages::FIStrorageSet
 *
 * Purpose:
 * Provides the document's IStorage to the pages for its own uses.
 * If this is a new storage, then we initalize it with streams we
 * want to always exists. If this is an open, then we create
 * our page list from the PageList string we wrote before.
 *
 * Parameters:
 * pIStorage LPSTORAGE to the new or opened storage. If this is
 * NULL then we just clean up and exit.
 * fChange BOOL indicating is this was a Save As operation
 * meaning that we have the structure already, we
 * just need to change our value of m_pIStorage.
 * fInitNew BOOL indicating if this is a new storage or one
 * opened from a previous save.
 */

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 30 :

BOOL CPages::FIStorageSet(LPSTORAGE pIStorage, BOOL fChange, BOOL fInitNew)
 {
 DWORD dwMode=STGM_DIRECT | STGM_READWRITE |
STGM_SHARE_EXCLUSIVE;
 HRESULT hr;
 LPPAGE pPage;
 BOOL fRet=FALSE;
 ULONG cbRead;
 PAGELIST pgList;
 LPSTREAM pIStream;
 LPMALLOC pIMalloc;
 LPDWORD pdwID;
 UINT i;

 //If we're just changing saved roots, just open the current page again
 if (fChange)
 {
 if (NULL==pIStorage)
 return FALSE;

 m_pIStorage->Release();
 m_pIStorage=pIStorage;
 m_pIStorage->AddRef();

 FPageGet(m_iPageCur, &pPage, TRUE);
 return TRUE;
 }

 //On new or open, clean out whatever it is we have.
 for (i=0; i < m_cPages; i++)
 {
 if (FPageGet(i, &pPage, FALSE))
 delete pPage;
 }

 SendMessage(m_hWndPageList, LB_RESETCONTENT, 0, 0L);

 if (NULL!=m_pIStorage)
 m_pIStorage->Release();

 m_pIStorage=NULL;

 //If we're just cleaning up, then we're done.
 if (NULL==pIStorage)
 return TRUE;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 31

 m_pIStorage=pIStorage;
 m_pIStorage->AddRef();

 //If this is a new storage, create the streams we require
 if (fInitNew)
 {
 //Page list header.
 hr=m_pIStorage->CreateStream(SZSTREAMPAGELIST, dwMode | STGM_CREATE
 , 0, 0, &pIStream);

 if (FAILED(hr))
 return FALSE;

 pIStream->Release();

 //Device Configuration
 hr=m_pIStorage->CreateStream(SZSTREAMDEVICECONFIG, dwMode |
STGM_CREATE
 , 0, 0, &pIStream);

 if (FAILED(hr))
 return FALSE;

 pIStream->Release();
 return TRUE;
 }

 /*
 * We're opening an existing file:
 * 1) Configure for the device we're on
 * 2) Read the Page List and create page entries for each.
 */

 ConfigureForDevice();

 //Read the page list.
 hr=m_pIStorage->OpenStream(SZSTREAMPAGELIST, NULL, dwMode, 0,
&pIStream);

 if (FAILED(hr))
 return FALSE;

 if (SUCCEEDED(CoGetMalloc(MEMCTX_SHARED, &pIMalloc)))
 {
 pIStream->Read((LPVOID)&pgList, sizeof(PAGELIST), &cbRead);
 m_cPages =pgList.cPages;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 32 :

 m_iPageCur=pgList.iPageCur;
 m_dwIDNext=pgList.dwIDNext;

 fRet=TRUE;
 cbRead=pgList.cPages*sizeof(DWORD);

 if (0!=cbRead)
 {
 pdwID=(LPDWORD)pIMalloc->Alloc(cbRead);

 if (NULL!=pdwID)
 {
 pIStream->Read((LPVOID)pdwID, cbRead, &cbRead);

 for (i=0; i < m_cPages; i++)
 fRet &=FPageAdd(-1, *(pdwID+i), FALSE); //-1==end of list

 pIMalloc->Free((LPVOID)pdwID);
 }
 }

 pIMalloc->Release();
 }

 pIStream->Release();

 if (!fRet)
 return FALSE;

 FPageGet(m_iPageCur, &pPage, TRUE);

 InvalidateRect(m_hWnd, NULL, FALSE);
 UpdateWindow(m_hWnd);

 return TRUE;
 }

BOOL CPages::FIStorageUpdate(BOOL fCloseAll)
 {
 LPPAGE pPage;
 LPSTREAM pIStream;
 LPMALLOC pIMalloc;
 LPDWORD pdwID;
 ULONG cb;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 33

 HRESULT hr;
 PAGELIST pgList;
 BOOL fRet=FALSE;
 UINT i;

 //We only need to possibly close the current page--nothing else is open.
 if (FPageGet(m_iPageCur, &pPage, FALSE))
 {
 pPage->Update();

 if (fCloseAll)
 pPage->Close(FALSE);
 }

 //We don't hold anything else open, so we can just write the page list.
 hr=m_pIStorage->OpenStream(SZSTREAMPAGELIST, NULL, STGM_DIRECT
 | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 if (FAILED(hr))
 return FALSE;

 if (SUCCEEDED(CoGetMalloc(MEMCTX_SHARED, &pIMalloc)))
 {
 pgList.cPages=m_cPages;
 pgList.iPageCur=m_iPageCur;
 pgList.dwIDNext=m_dwIDNext;

 pIStream->Write((LPVOID)&pgList, sizeof(PAGELIST), &cb);

 cb=m_cPages*sizeof(DWORD);
 pdwID=(LPDWORD)pIMalloc->Alloc(cb);

 if (NULL!=pdwID)
 {
 for (i=0; i < m_cPages; i++)
 {
 FPageGet(i, &pPage, FALSE);
 *(pdwID+i)=pPage->GetID();
 }

 pIStream->Write((LPVOID)pdwID, cb, &cb);
 pIMalloc->Free((LPVOID)pdwID);
 fRet=TRUE;
 }
 pIMalloc->Release();
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 34 :

 pIStream->Release();

 return fRet;
 }

UINT CPages::PageInsert(UINT uReserved)
 {
 LPPAGE pPage;

 if (0!=m_cPages)
 {
 //Close the current page, committing changes.
 if (!FPageGet(m_iPageCur, &pPage, FALSE))
 return 0;

 pPage->Close(TRUE);
 }

 [Other code omitted from listing]
 }

UINT CPages::PageDelete(UINT uReserved)
 {
 LPPAGE pPage;

 if (!FPageGet(m_iPageCur, &pPage, FALSE))
 return -1;

 //Delete the page in both the storage and in memory.
 SendMessage(m_hWndPageList, LB_DELETESTRING, m_iPageCur, 0L);

 pPage->Destroy(m_pIStorage);

 [Other code omitted from listing]
 }

UINT CPages::CurPageSet(UINT iPage)
 {
 UINT iPagePrev=m_iPageCur;
 LPPAGE pPage;

 //Close the old page committing changes.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 35

 if (!FPageGet(iPagePrev, &pPage, FALSE))
 return -1;

 pPage->Close(TRUE);

 [Code to adjust page number omitted from listing]

 //Open the new page.
 FPageGet(m_iPageCur, &pPage, TRUE);

 InvalidateRect(m_hWnd, NULL, FALSE);
 UpdateWindow(m_hWnd);
 return iPagePrev;
 }

BOOL CPages::DevModeSet(HGLOBAL hDevMode, HGLOBAL hDevNames)
 {
 LPDEVNAMES pdn;
 LPSTR psz;
 DEVICECONFIG dc;
 LPDEVMODE pdm;
 LPSTREAM pIStream;
 HRESULT hr;
 ULONG cbWrite;
 BOOL fRet=FALSE;

 if (NULL==hDevMode || NULL==hDevNames)
 return FALSE;

 hr=m_pIStorage->OpenStream(SZSTREAMDEVICECONFIG, 0, STGM_DIRECT
 | STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 if (FAILED(hr))
 return FALSE;

 pdm=(LPDEVMODE)GlobalLock(hDevMode);

 if (NULL!=pdm)
 {
 dc.dm=*pdm;
 GlobalUnlock(hDevMode);
 psz=(LPSTR)GlobalLock(hDevNames);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 36 :

 if (NULL!=psz)
 {
 pdn=(LPDEVNAMES)psz;
 lstrcpy(dc.szDriver, psz+pdn->wDriverOffset);
 lstrcpy(dc.szDevice, psz+pdn->wDeviceOffset);

 pIStream->Write((LPVOID)&dc, sizeof(DEVICECONFIG), &cbWrite);
 GlobalUnlock(hDevNames);
 fRet=TRUE;
 }
 }

 if (!fRet)
 return FALSE;

 GlobalFree(hDevNames);
 GlobalFree(hDevMode);

 return ConfigureForDevice();
 }

HGLOBAL CPages::DevModeGet(void)
 {
 HGLOBAL hMem;
 LPDEVMODE pdm;
 ULONG cbRead;
 LPSTREAM pIStream;
 HRESULT hr;

 hr=m_pIStorage->OpenStream(SZSTREAMDEVICECONFIG, 0, STGM_DIRECT
 | STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 if (FAILED(hr))
 return FALSE;

 hMem=GlobalAlloc(GHND, sizeof(DEVMODE));

 if (NULL!=hMem)
 {
 pdm=(LPDEVMODE)GlobalLock(hMem);
 pIStream->Read((LPVOID)pdm, sizeof(DEVMODE), &cbRead);
 GlobalUnlock(hMem);
 }

 pIStream->Release();

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 37

 return hMem;
 }

BOOL CPages::ConfigureForDevice(void)
 {
 POINT ptOffset, ptPaper;
 RECT rc;
 HDC hDC;
 DEVICECONFIG dc;
 HRESULT hr;
 LPSTREAM pIStream;
 ULONG cbRead;

 //Read the DEVMODE and driver names from our header stream.
 hr=m_pIStorage->OpenStream(SZSTREAMDEVICECONFIG, 0, STGM_DIRECT
 | STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 if (FAILED(hr))
 return FALSE;

 pIStream->Read((LPVOID)&dc, sizeof(DEVICECONFIG), &cbRead);
 pIStream->Release();

 hDC=CreateIC(dc.szDriver, dc.szDevice, NULL, &dc.dm);

 [Other code omitted from listing]
 }

BOOL CPages::FPageGet(UINT iPage, LPPAGE FAR *ppPage, BOOL fOpen)
 {
 if (NULL==ppPage)
 return FALSE;

 if (sizeof(LPPAGE)==SendMessage(m_hWndPageList, LB_GETTEXT, iPage
 , (LONG)(LPVOID)ppPage))
 {
 if (fOpen)
 (*ppPage)->FOpen(m_pIStorage);

 return TRUE;
 }

 return FALSE;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 38 :

BOOL CPages::FPageAdd(UINT iPage, DWORD dwID, BOOL fOpenStorage)
 {
 LPPAGE pPage;
 LRESULT lr;

 pPage=new CPage(dwID);

 if (NULL==pPage)
 return FALSE;

 if (fOpenStorage)
 pPage->FOpen(m_pIStorage);

 if (0xffff==iPage)
 iPage--;

 //Now try to add to the listbox.
 lr=SendMessage(m_hWndPageList, LB_INSERTSTRING, iPage+1, (LONG)pPage);

 if (LB_ERRSPACE==lr)
 {
 if (fOpenStorage)
 pPage->Close(FALSE);

 delete pPage;
 return FALSE;
 }

 return TRUE;
 }

PAGE.CPP

/*
 * PAGE.CPP
 * Modifications for Chapter 5
 *
 * Implementation of the CPage class which is a simple structure.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 39

#include "patron.h"

CPage::CPage(DWORD dwID)
 {
 m_dwID =dwID;
 m_pIStorage=NULL;
 return;
 }

CPage::~CPage(void)
 {
 Close(FALSE);
 return;
 }

DWORD CPage::GetID(void)
 {
 return m_dwID;
 }

BOOL CPage::FOpen(LPSTORAGE pIStorage)
 {
 BOOL fNULL=FALSE;
 HRESULT hr=NOERROR;
 DWORD dwMode=STGM_TRANSACTED | STGM_READWRITE |
STGM_SHARE_EXCLUSIVE;
 char szTemp[32];

 if (NULL==m_pIStorage)
 {
 fNULL=TRUE;

 if (NULL==pIStorage)
 return FALSE;

 /*
 * Attempt to open the storage under this ID. If there is none, then
 * create it. In either case we end up with an IStorage that we
 * either save in pPage or release.
 */

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 40 :

 wsprintf(szTemp, "Page %lu", m_dwID);

 hr=pIStorage->OpenStorage(szTemp, NULL, dwMode, NULL, 0, &m_pIStorage);

 if (FAILED(hr))
 hr=pIStorage->CreateStorage(szTemp, dwMode, 0, 0, &m_pIStorage);
 }
 else
 m_pIStorage->AddRef();

 if (FAILED(hr))
 {
 if (fNULL)
 m_pIStorage=NULL;

 return FALSE;
 }

 return TRUE;
 }

void CPage::Close(BOOL fCommit)
 {
 if (NULL==m_pIStorage)
 return;

 if (fCommit)
 Update();

 if (0==m_pIStorage->Release())
 m_pIStorage=NULL;

 return;
 }

void CPage::Update(void)
 {
 if (NULL!=m_pIStorage)
 m_pIStorage->Commit(STGC_ONLYIFCURRENT);

 return;
 }

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 41

void CPage::Destroy(LPSTORAGE pIStorage)
 {
 char szTemp[32];

 if (NULL!=pIStorage)
 {
 wsprintf(szTemp, "Page %lu", m_dwID);
 pIStorage->DestroyElement(szTemp);
 }

 return;
 }

The Root Storage and Temporary Files
Patron always keeps the root storage open: if the file is untitled (from a File New command), Patron uses a
temporary compound file created by passing a NULL to StgCreateDocfile. Note you should use the
STGM_DELETEONRELEASE flag with temporary files:

hr=StgCreateDocfile(NULL, STGM_TRANSACTED | STGM_READWRITE | STGM_CREATE
 | STGM_SHARE|EXCLUSIVE | STGM_DELETEONRELEASE, 0, &m_pIStorage);

If the file was already exists on the disk (opened with the File Open command), Patron opens it with
StgOpenStorage and keeps that storage open. These two functions are called from CPatronDoc::ULoad in
DOCUMENT.CPP depending on whether or not the user chose File New or File Open.

Keeping a storage open in this manner is as expensive as keeping an open file using traditional file I/O:
the Windows 3.1 implementation of compound files uses a file handle to each open root storage, although all
sub-storages and streams require no additional MS-DOS resources. If you can tolerate the cost of keeping the
root storage open, you have the benefit of keeping anything else open with the only cost being that of
memory.

This temporary storage will be created with a pseudo-random name in the directory of your TEMP
environment variable. If you specify STGM_DELETEONRELEASE then the OLE 2.0 libraries will keep the
files cleaned out. If, however, your application crashes before releasing a temporary file, or you fail to call
IStorage::Release the final time, then you will end up with a number of these orphaned temp files.

Temporary files are also interesting in File Save As cases, described below in "File Save As Operations."
Managing Sub-Storages
As mentioned above, Patron manages a sub-storage for each page in the overall document. This, of course,
means somewhat more code complexity for the cases of creating and destroying pages.

Whenever Patron creates a new page in the document, it calls IStorage::CreateStorage using a name of
"Page xx" where xx is the ASCII for a DWORD page index. The code shown here is taken from PAGE.CPP
in the function CPage::FOpen, with either creates a new sub-storage for an new page or opens the sub-storage
for an existing page using IStorage::OpenStorage:

BOOL CPage::FOpen(LPSTORAGE pIStorage)
 {
 HRESULT hr=NOERROR;
 DWORD dwMode=STGM_TRANSACTED | STGM_READWRITE | STGM_SHARE_EXCLUSIVE;
 char szTemp[32];

 //m_dwID is the page ID (not the page number) stored persistently.
 wsprintf(szTemp, "Page %lu", m_dwID);

 hr=pIStorage->OpenStorage(szTemp, NULL, dwMode, NULL, 0, &m_pIStorage);

 if (FAILED(hr))
 hr=pIStorage->CreateStorage(szTemp, dwMode, 0, 0, &m_pIStorage);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 42 :

The page identifier, m_dwID is assigned when creating a new page. Each Patron document creates the first
page with an ID of zero and increments the ID for each page thereafter. The next usable ID us stored
persistently in the file, so the IDs continue to increment throughout the life of the document. The ordering of
the pages is written into another stream as a sequence of these IDs that reflect the positions in the document
where they were created. IDs are not recycled when a page is destroyed, but the DWORD counter would only
overflow if you sat here and created one page every second until the Gregorian year 2129. I desperately hope
this software is obsolete by then!

Speaking of destroying a page, this operation required a call to IStorage::DestroyElement to counter the
IStorage::CreateStorage in the code above. The function CPage::Destroy takes care of this in Patron:

//pIStorage is the document's root storage.
void CPage::Destroy(LPSTORAGE pIStorage)
 {
 char szTemp[32];

 if (NULL!=pIStorage)
 {
 wsprintf(szTemp, "Page %lu", m_dwID);
 pIStorage->DestroyElement(szTemp);
 }

 return;
 }

The CPage class is a simple structure used to manage the open storage and the identifier for a page. Since it
maintains it's ID, we keep the code to generate a page number from that ID down in the CPage
implementation.
Multi-Level Commits
Patron opens its files in transacted mode, so it must call IStorage::Commit on its open storage before closing
the document. Until that time, all changes, including new and deleted pages, are, what a HACK1 would term
"fleeting." In other words, all these changes are only stored in memory such that turning off your machine
would only commit them to the Great-Big-Bit-Bucket in the sky.

Of course, we would like to commit those changes to the actual disk file instead during a File Save
operation. A File Save As operation is a little different and is treated in the next section. To save changes to
a file we opened previously we only have to call IStorage::Commit on the root to send all changes to the disk.
The catch is, however, that we have to make sure that every sub-storage opened in transacted mode has also
been committed.

Whenever a change is made to a sub-storage (either any modification to a STGM_DIRECT storage or
a ::Commit on an STGM_TRANSACTED storage) those changes are only published to the immediate storage
in which it's contained. That is, if I have storages A, B, and C in a compound file:

and I change storage C, only storage B is cognizant of those changes:

If storage B is direct then it immediately publishes the change in C to storage A. If storage A is direct, then
those changes are immediately written to disk. If storage B is transacted, however, changes in C are not
published to storage A until storage B is committed, just as changes to storage B (including commits) are not
published to the actual disk until storage A is committed.

So the whole trick with multiple-levels of transacted storages is to walk through the whole chain making
sure everything that needs committing gets it, then commit the root storage to actually save all the changes
permanently. Patron handles this by telling the current page to commit, writing any streams that might
require modification, and the committing the root storage. Patron does not worry about committing any other
page because as the user switches between pages, Patron calls IStorage::Commit and IStorage::Release on the
current page before opening the next page. This means that when we want to commit the outermost storage,
we only have to commit the current page instead of walking all pages to commit each in turn.

A commit can happen in a few different ways based on one of four flags passed to IStorage::Commit:

1A slave who would hold laurels wreath over the head of a victorious general head during a triumph in imperial Rome. While the victor
would bask in applause, the slave would whisper in his ear, "All glory is fleeting." HACK: I think I could watch Patton again where he
mentions this at the end of the movie. Otherwise there's a good ol' Star Trek where Mr. Spock uses the word :)

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 43

STGC_DEFAULT No special semantics; just commit changes.
STGC_ONLYIFCURRENT In a file-sharing scenario, this flag prevents one process from

overwriting changes made in another process since the first process
opened the storage. If our changes are not current, then
IStorage::Commit returns the code STG_E_NOTCURRENT on which
you can attempt to merge changes or inform the user to take
appropriate action.

STGC_OVERWRITE Attempts to overwrite the entire existing file resulting in smaller file
sizes. However, this is somewhat prone to failure due to memory
constraints, and if such a failure occurs, the actual disk file will
generally be in Limbo: neither old nor new versions. This flag is not
recommended for general use.

STGC_DANGEROUSLYCOMMITMERELYTODISKCACHE OLE 2.0 designers never said they
couldn't be verbose. This flag to ::Commit allows compound files to
write the changes to an existing disk cache, such as Microsoft
Windows' SmartDrv 4.0 instead of writing to the cache then forcing a
flush of that cache (Int 21h Fn68h). Default behavior, in order to get
very robust saves, is to flush the cache immediately to avoid risky
disk buffering. If you want better performance for saves, you can risk
using this flag, which will not be any worse that using traditional file
I/O as it stands today.

A sibling function to IStorage::Commit is IStorage::Revert which dumps all the changes kept in memory
for a transacted storage made since the last ::Commit. This affects all
open sub-storages and streams as well, . In addition, if you ::Release
and IStorage without committing it first you imply ::Revert, that is,
you discard changes. Therefore it is not necessary to call ::Revert on
an operation like File Close.

File Save As Operations
The use of temporary files have the interesting problem of getting all the data from that temporary file into
another file with a user-specified name, such as when executing a File Save As command. Applications
typically do this by creating the new file and copying the data from the temporary file into this new file,
deleting the temporary file at the end.

Compound files are no different. As we've seen already you can use StgCreateDocfile to create a
temporary compound file for you, as Patron does. Then question is how to copy the data from the temporary
file into the final destination file. One very painful way would b to somehow load all the streams and
storages into memory and write them out to the new storage. Ouch. I'm not sure about you, but I would not
enjoy taking a few years to write this code.

Anticipating this much change, the OLE 2.0 architects kindly included IStorage::CopyTo the structured
storage model which takes whatever data is in one storage object, regardless of whether it's a root or sub-
storage, and copies that data into another storage. Patron uses this when saving any file under a new name,
which encompasses renaming temp files as well as doing a Save As on an already known file.

The first step is to open the new destination file using StgCreateDocfile and the STGM_CREATE flag;
use of this flag means create the file if it's not already there, and if it is there, overwrite it completely. Most
applications use this method in Save As operations. Once you have this new storage opened, call
the ::CopyTo in your currently open storage, passing the new destination storage as the fourth parameter:

m_pIStorage->CopyTo(NULL, NULL, NULL, pIStorage);

The other three parameters have to do again, with stream exclusion and STGM_PRIORITY which is not
covered in this book. Remember also that if you opened the new storage with STGM_TRANSACTED you
must call ::Commit to actually save the changes to the new disk file.

When you have changed the file in which your current data lives, you generally want to keep that new
file open as the active document. For this reason you should close all sub-storages and streams in the original
storage before ::CopyTo and reopen them later in the context of the new root storage. Otherwise you might
end up talking to the wrong file, or a file that no longer exists! Not good. Patron handles this through it's
policy of only keeping the current page open (which, as we have seen, cleans up the commit procedure
somewhat) so that when it does copy from one storage to another it only has to close the current page, do

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 44 :

the ::CopyTo, then switch root storages and reopen the page. When designing your use of compound files,
keep this in mind.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 45

Low-Memory Save As Operations
When memory is low a typical Save As operation as described above might fail. So you are left with a bunch
of uncommitted changes to the file you originally opened.

In such a situation you want to be able to take all uncommitted changes that live in memory and all

unchanged part of the storage that still live on disk and write them to a new storage without taking up any
more memory. In other words, we want to make a copy of the original disk file to the new file, then commit

the changes into that new file.

A special interface called IRootStorage supports just this functionality. You can obtain a pointer to this
interface by calling IStorage::QueryInterface with IID_IRootStorage on a storage object from StgOpenStorage

or StgCreateDocfile. IRootStorage has one member function: SwitchToFile(LPSTR pszNewFile) where
pszNewFile is the name of the new file to associate with the storage object. This effectively makes a disk

copy of the original file and internally associates your IStorage object with that new file. You may now call
IStorage::Commit to save changes to that new file. Preview Note: Patron does not use this, at least not yet.

Streams as Memory Structures

A great use for a stream object is to use it for run-time management of certain structures that eventually have
to end up in your disk file. These structures are those that can be persistently saved, that is, contain no
pointers or other references to values only determined at run-time. Since you will need to write some of these
structures to disk anyway, it makes sense to keep them in the file in the form of a stream instead of
duplicating that structure in memory. Instead of having to worry about saving that structure to disk when the
time comes you can just commit since that structure is already in a stream inside your storages.

The best candidates for this sort of treatment are structures that define a configuration for your
application that is not likely to change often, since reading and writing a stream is considerably slower than
performing quick pointer dereferences in memory. Some examples are a LOGFONT structure that describes
the current font you are using or a DEVMODE structure that defines the printer setup for the document.

Patron saves the latter structure, DEVMODE, in a stream called "Device Configuration" that lives off the
document's root storage. When a new document is created this stream is filled with the configuration of the
default printer. When the user later chooses Printer Setup, Patron first reads the contents of this stream to
recreate a DEVMODE structure to pass to the common dialog function PrintDlg. When PrintDlg returns,
Patron writes the new configuration to the stream and reinitializes the display for the new parameters. Since
the data lives in a stream, Patron doesn't need to perform any other steps during a File Save operation.

Streams are a very powerful for managing structures, especially those that change size frequently. A
common problem with memory structures is that you have to continually reallocate them as your data grows,
and reallocation is always a little more code that we'd like. A stream, on the other hand, will expand itself to
accommodate a write beyond its current boundaries. In other words, the reallocation code we all hate to write
is hidden down in the stream implementation.

Standard Summary Information Property Set
Preview Note: Contents of this section pending code for it and decision on how to fit property sets into this
chapter. Since property sets are a potentially big topic, I don't know if one section here may suffice. What
optimally will happen is that there is some other release of code we can take advantage of here, either by
showing how to use it or maybe providing a dialog box that collects the information and writes it to a
storage.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 46 :

Other OLE 2.0 Technologies and Structured Storage
OLE 2.0 makes much more use of structured storage and compound files than we have so far exercised in this
chapter. As we'll see in Chapter 6, structured storage can be used as a data transfer medium as much as
global memory is today. The later chapters that deal with compound documents use structured storage to
allow compound document objects to write themselves directly into a storage object provided by the
container. If the object is given a storage that exists already within the container's disk file, then the object is
saving itself directly to that file and has full incremental access to that structure since the container gives the
object a storage object for that object's exclusive use.

The more general question that various C++ class libraries (al á MFC) attempt to address is how to
serialize any arbitrary object so as to save it in a file. The lowest-level MFC base object class called CObject
has, among others, two members functions called ::IsSerializable and ::Serialize. ::IsSerializable tells the
caller if a call to ::Serialize will actually do anything. If the answer is positive, then the user can
call ::Serialize to save the object's persistent data to a file (a object called an 'archive' in MFC). As we had
mentioned when discussing QueryInterface, this mechanism does not tightly couple the questions of whether
the object can serialize (CObject::IsSerializable) with the actual function of serialization (CObject::Serialize).
The object cannot prevent its user from calling ::Serialize unexpectedly.

OLE 2.0 objects, be they component objects, data objects, compound document object, what have you,
have more control. They to will answer the question "can you persistently save yourself" and if the answer is
positive they will provide the means to accomplish such an operation. The means are expressed in three
interfaces called IPersistStorage, IPersistStream, and IPersistFile, providing the functions through which an
object's user can tell the object to save to an storage object, a stream object, or to a file given the filename.

To ask the object if it can serialize to one of these types of elements you must QueryInterface that object
for IID_IPersistStorage, IID_IPersistStream, or IID_IPersistFile, which says "Hey object! Can you serialize
yourself to an xx?" If the object says no, it returns no interface and an error. If it answers positive, then it
returns the interface pointer through which you can ask it to perform the function of serialization. Only when
the object supports this functionality are you allowed to even thing about calling it.

The DLL implementation of Polyline discussed in Chapter 4 had two functions in its custom IPolyline
interface: ::ReadFromFile and ::WriteToFile, and the Component Schmoo program used these functions to
essentially serialize the Polyline object. For this chapter I have eliminated the two file-oriented functions in
IPolyline and instead implemented the IPersistStorage interface on the Polyline object itself–so now this
object supports multiple interfaces. The implementation is described in sections below. I chose
IPersistStorage for the object because Component Schmoo for this chapter used compound files for its file I/O
and when we turn Polyline into a compound document object in Chapter 10 we will need an implementation
of IPersistStorage. The IPersistFile interface is used for servicing linked object, so while I'll mention it here
we won't discuss any implementation until Chapter 13. The IPersistStream is not used very often in OLE 2.0
applications, so this book doesn't ever have a need to implement it.

The remainder of this section is split into three parts. The first describes the IPersistStorage,
IPersistStream, and IPersistFile interfaces. The second details how an application like Component Schmoo
uses the IPersistStorage interface, which applies to understanding OLE 2.0 container applications. The last
section discusses the implementation of the IPersistStorage on the Polyline object which will provide a good
foundation for compound document work in later chapters. What is shown here are the basics of how to use
and implement objects that know how to save themselves, but there will be changes when compound
documents are involved.

NOTE: The IPersist, IPersistStorage, and IPersistFile interfaces are defined in OLE2.H. Component
Schmoo still uses CoInitialize and CoUninitialize instead of the Ole* variants since use of compound
files and the IPersist* interfaces need only the Co* variants.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 47

The IPersistStorage, -Stream, and -File Interfaces
When an object answers the questions "can you save yourself to some element?" it responds with a pointer to
one of three IPersist* interfaces. All three interfaces derive from the IPersist interface we discussed and
implemented in the Koala object of Chapter 4. IPersist contributes only one member function, GetClassID, to
the three interfaces introduced here. All the interfaces then provide information related to serialization as
well as the actual capabilities to do so. They should be used if you want to provide serialization capabilities
from your own object since they are standard and published interfaces. Note that the member functions
shown in the table below apply only to transferring data to an from and storage medium: they imply no user
interface and have no direct relationship to File menu commands. Therefore members like ::Load mean "load
the data" but do not imply "execute File Open."

IPersistStorage IPersistStream IPersistFile Description
GetClassID GetClassID GetClassID Returns the CLSID of the object. A user can call

this function to determine if an object identified
by the interface might be able to load a storage,
stream, or file marked with another CLSID (such
as with WriteClassStg).

IsDirty IsDirty IsDirty Replies whether the object should be saved in its
present state, returning the SCODE S_OK if the
object is dirty and S_FALSE if not.

Load Load Load Instructs the object to load itself from a storage
object, stream object, or from a file identified by a
filename. Objects implementing IPersistStorage
or IPersistStream may AddRef the storage or
stream object and hold on to it for incremental
access. IPersistStorage objects will only see
one ::Load call in its lifetime and excludes the use
of ::InitNew.

Save Save Save Instructs the object to save itself to the element
passed to this function. For IPersistStorage, this
function is also told if the storage object is the
same as previously passed to ::Load, in which
case the object can perform an incremental save.
For IPersistStream the object is told whether or
not to reset its dirty flag. For IPersistFile, the
object is told if it should consider this saved file
the current file or if it should ignore the name and
continue to use the file passed to ::Load.

SaveCompleted SaveCompleted (Not in IPersistStream) Instructs an object that a
call to ::Save is finished. See "A Heavy Dose of
Protocol with IPersistStorage" below for more
details.

InitNew IPersistStorage Only: When a brand-new object is
initially created the user is contractually obligated
to provide an IStorage in which the object can
write incremental changes. The object can ignore
this call or hold on to the IStorage with
an ::AddRef for incremental access. The object
can only receive one ::InitNew call in its lifetime
and use of this function precludes use of ::Load,
that is ::InitNew and ::Load are mutually
exclusive.

HandsOffStorage IPersistStorage Only: Instructs the object to
release any kind of reference count it is
maintaining on its storage object. The user is
contractually obligated to call this only
immediately after a ::Save and before

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 48 :

a ::SaveCompleted.
GetSizeMax IPersistStream Only: Asks the object to return

how large the stream would be if ::Save was
called immediately.

GetCurFile IPersistFile Only: Provides the caller with the
current file known to the object.

The only methods to obtain a pointer to any one of these interfaces is to request it in a call to
IClassFactory::CreateInstance (CoCreateInstance also) or by
asking for it via QueryInterface on some other interface
pointer. All three interfaces have built-in marshaling support
and are generally used in compound document scenarios:
IPersistStorage for embedded objects, IPersistStream for
monikers, IPersistFile for linked objects. Choosing to
implement one of them or choosing to use an object through
any interface carries some responsibility with the benefit of
being able to treat most object through the same interfaces.
This is, in fact, one of the principles of compound documents,
that a container can ask any embedded object to save through
an IPersistStorage. For an application like a container, the cost
is a little more work but the benefit is the ability to use any
compound document object without any reliance on custom
interfaces.

A Heavy Dose of Protocol with IPersistStorage
By nature structured storage supports not only the capability for incremental saves but supports full
incremental access. This carries with it a few problems since many different agents may, at any given time,
have various storages and streams open and uncommitted when the agent controlling the root storage wishes
to do a complete save, such as to a new file.

As a basis for our discussion let's assume we have an application in control of a root storage in which
lives a sub-storage for an object. The object supports the IPersistStorage interface such that the application
can communicate information about storage:

When the application creates a new file it will create a temporary file for the root storage and create the sub-
storage for the object. In this case the application is required to call the object's IPersistStorage::InitNew
passing the sub-storages IStorage pointer the new . Inside ::InitNew the object may retain the IStorage

pointer by calling IStorage::AddRef and saving the pointer in memory. Similarly, when the application opens
an existing file it will reopen the sub-storage (with IStorage::OpenStorage on the root) and pass that sub-
storage to the object's IPersistStorage::Load in which the object again may retain the pointer. In either

case, ::InitNew or ::Load, the object is given an IStorage pointer that it can access incrementally as much as
desired throughout the object's lifetime:

Some very simple objects will have no need to retain any IStorage because their data is so small (the Polyline
object, for example, has a 106-byte data structure and so maintains it all in memory). Most objects will,

however, want to retain the pointer such that they can load as little data as is necessary to operate. Let's call
this free-access state normal mode. Once an object is in normal mode, the application is not allowed to again

call ::InitNew or ::Load.
Two things may now happen to the object, that is, the application may call either ::Save

or ::HandsOffStorage. ::Save instructs the object to save its changes (either to its currently held IStorage or to
a new one) and enter zombie state (also termed 'no-scribble'). While the object is zombified it may not
perform any incremental writes to the storage although it may still read from the storage; most editing
operations on this object will, in general, fail. One does not converse well with zombies. When the
application will again allow the object to perform incremental writes, it calls the object's ::SaveCompleted

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 49

function which allows the object to return to normal state.

When the application wishes to perform a full save it requires that the object is not holding on to an open
IStorage, that is, the application cannot rename or delete its root file when an object is holding on to a piece

of that file. In such situations the application will call ::HandsOffStorage. If the application
calls ::HandsOffStorage without first calling ::Save, the object must shrug its shoulders, heave a heavy sigh,

and blindly ::Release its held IStorage. If the storage was opened transacted, this will, of course, discard
changes. The application is in control since it determines the access mode of the storage anyway; the object

has to trust that the application doesn't want the object saved.
When the application calls ::HandsOffStorage the object enters hands-off state where it cannot read or

write to a storage by simple fact that it has to ::Release any storage on which it would even attempt such
operations. Since the object has no hold on the storage, the application is free to party all over its root
storage. When the application has finished partying, it must call ::SaveCompleted on the object which brings
it from hands-off mode to normal mode.

The application must always pass an IStorage in the ::SaveCompleted call, regardless of the object's current
state. This IStorage must always contains the structure expected by the object since the object now has the

right to retain a pointer to this new IStorage. The IStorage may or may not be the same as passed
to ::InitNew, ::Load, or ::Save–if the object still has an IStorage after ::Save it should ::Release that pointer

and reopen what it needs in the new one passed through ::SaveCompleted.
All of this protocol can be reduced down to simple checklists for both the user of the object and the

object itself, which are provided in the following two sections. Note that IPersistFile also
has ::SaveCompleted by not ::HandsOffStorage, meaning that you must treat IPersistFile as you would
IPersistStorage, ignoring the ::HandsOffStorage implications which obviously do not apply.
Of Component Users and IPersistStorage: Component Schmoo
The last section outlined some of the responsibilities of an object user when dealing with an object through
IPersistStorage. The Component Schmoo application is a user of the Polyline object, so since we're replacing
custom file I/O members in Polyline with IPersistStorage, CoSchmoo must follow the protocol. CoSchmoo is
gradually becoming a container exclusively for Polyline objects and most of the discussion in this section is
pertinent to OLE 2.0 container applications. The important code changes made to CoSchmoo are shown in
the code fragments below and so full code listing are not provided here.

For convenience, CoSchmoo always retains a pointer to the Polyline's IPersistStorage, first obtaining the
pointer via QueryInterface after creation and releasing that pointer when freeing the object as a whole. This
saves CoSchmoo from having to QueryInterface for IPersistStorage in the middle of a load or save operation.
In the code below, m_pIPersistStorage is of type LPPERSISTSTORAGE:

BOOL CSchmooDoc::FInit(...)
 {
 ...

 hr=CoCreateInstance(CLSID_Polyline5, NULL, CLSCTX_INPROC_SERVER
 , IID_IPolyline5, (LPVOID FAR *)&m_pPL);

 if (FAILED(hr))
 return FALSE;

 hr=m_pPL->QueryInterface(IID_IPersistStorage, &m_pIPersistStorage);

 if (FAILED(hr))
 return FALSE;

 ...
 }

CSchmooDoc::~CSchmooDoc(void)
 {
 ...

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 50 :

 if (NULL!=m_pIPersistStorage)
 m_pIPersistStorage->Release();

 if (NULL!=m_pPL)
 m_pPL->Release();

 return;
 }

When loading a file or creating a new one, CoSchmoo follows its responsibilities and provides an IStorage to
the Polyline's IPersistStorage::Load or ::InitNew. For a new file, CoSchmoo creates a new temp file using
StgCreateDocfile, passes it to the Polyline, then releases it. If the Polyline did not bother to save this storage
we don't care–our release accounts for our reference count. When CoSchmoo loads an existing file, it opens
it using StgOpenStorage and passes that storage object to the Polyline. Again, we release the storage here
ourselves trusting that Polyline will AddRef the storage object before holding on to it:

//For new files
hr=StgCreateDocfile(NULL, STGM_DIRECT | STGM_READWRITE | STGM_CREATE
 | STGM_DELETEONRELEASE | STGM_SHARE_EXCLUSIVE, 0, &pIStorage);

if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;

m_pIPersistStorage->InitNew(pIStorage);
pIStorage->Release();

...

//For existing files.
hr=StgOpenStorage(pszFile, NULL, STGM_DIRECT | STGM_READ
 | STGM_SHARE_EXCLUSIVE, NULL, 0, &pIStorage);

if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;

hr=m_pIPersistStorage->Load(pIStorage);
pIStorage->Release();

For File Save CoSchmoo always creates a new root storage and passes it to the Polyline being sure to
call ::SaveCompleted as protocol demands. The FALSE flag to ::Save indicates that the storage passes
in ::Save is not the same as passed to ::Load or ::InitNew:

hr=StgCreateDocfile(pszFile, STGM_DIRECT | STGM_READWRITE
 | STGM_CREATE | STGM_SHARE_EXCLUSIVE, 0, &pIStorage);

if (FAILED(hr))
 return DOCERR_COULDNOTOPEN;

pIStorage->SetStateBits(STGSTATE_DOC, STGSTATE_DOC);

m_pIPersistStorage->Save(pIStorage, FALSE);
m_pIPersistStorage->SaveCompleted(pIStorage);

pIStorage->Release();

OLE 2.0 Container Applications and IPersistStorage

OLE 2.0 containers never use IPersistStorage directly; instead, they use functions like OleCreate*,
OleLoad, and OleSave which internally call various IPersistStorage members. All of three of these
functions (along with the other OleCreate* variants) require you to pass an IStorage pointer for the
object. The OleCreate calls, after creating the object using CoCreateInstance, QueryInterface for
IPersistStorage on the new object, then pass your IStorage to the object through
IPersistStorage::InitNew. OleLoad will first read the CLSID from private streams that OLE places in

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 51

the storage (in OleSave), calls CoCreateInstance to get the object, calls QueryInterface for
IPersistStorage, then passes your IStorage to IPersistStorage::Load. Since you cannot call OleLoad
and OleCreate* for the same object, you cannot call ::Load and ::InitNew on the same
IPersistStorage. Finally, to OleSave you pass some interface pointer to the object to save and the
IStorage. OLE generates calls to QueryInterface for IPersistStorage, then IPersistStorage::Save
passing your IStorage (and you also tell OleSave if it's the same as passed to ::Load or ::InitNew),
then IPersistStorage::SaveCompleted. All these Ole* calls will also call IPersistStorage::Release
when they're complete.
The only occasion where a container may need to use IPersistStorage itself is when it required use
of ::HandsOffStorage: the OLE 2.0 APIs don't make a provision for such an action. But as
mentioned in an earlier chapter, most APIs are wrappers for common sequences of
operations. ::HandsOffStorage is not considered common enough to warrant wrapping in an API.

Of Component Objects and IPersistStorage: Polyline
Our good friend Polyline is on the road to becoming a full compound document object in a DLL, and part of
the implementation of such an object is to support IPersistStorage. A number of changes had to occur to
Polyline. The most major change significant to our discussion is the addition of IPERSTOR.CPP, shown in
Listing 5-3. The other changes, mostly minor, that occur in other files handle the fact that Polyline now has
two interfaces, IPolyline and IPersistStorage, where the implementation of the latter is contained in the
CImpIPersistStorage class implemented in Listing 5-3. Note that the IPOLY5.H file in the INC directory is a
modification if IPolyline from which I have removed the file-related members ::ReadFromFile
and ::WriteToFile as their semantics are replaced with IPersistStorage. 1

IPERSTOR.CPP

/*
 * IPERSTOR.CPP
 *
 * Implementation of the IPersistStorage interface that we expose on the
 * Polyline object.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved
 */

#include "polyline.h"

CImpIPersistStorage::CImpIPersistStorage(LPVOID pObj, LPUNKNOWN punkOuter)
 {
 m_cRef=0;
 m_pObj=pObj;
 m_punkOuter=punkOuter;
 return;
 }

Listing 5-3: The IPersistStorage interface implementation for the Polyline object.

1IPersistFile was not used because Polyline will eventually become a compound document object where IPersistStorage is required. We
also want to demonstrate compound files in this chapter which IPersistStorage uses, but not IPersistFile.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 52 :

CImpIPersistStorage::~CImpIPersistStorage(void)
 {
 return;
 }

STDMETHODIMP CImpIPersistStorage::QueryInterface(REFIID riid, LPVOID FAR *ppv)
 {
 return m_punkOuter->QueryInterface(riid, ppv);
 }

STDMETHODIMP_(ULONG) CImpIPersistStorage::AddRef(void)
 {
 ++m_cRef;
 return m_punkOuter->AddRef();
 }

STDMETHODIMP_(ULONG) CImpIPersistStorage::Release(void)
 {
 --m_cRef;
 return m_punkOuter->Release();
 }

STDMETHODIMP CImpIPersistStorage::GetClassID(LPCLSID pClsID)
 {
 LPCPolyline pObj=(LPCPolyline)m_pObj;

 *pClsID=pObj->m_clsID;
 return NOERROR;
 }

STDMETHODIMP CImpIPersistStorage::IsDirty(void)
 {
 LPCPolyline pObj=(LPCPolyline)m_pObj;

 return ResultFromScode(pObj->m_fDirty ? S_OK : S_FALSE);
 }

STDMETHODIMP CImpIPersistStorage::InitNew(LPSTORAGE pIStorage)

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 53

 {
 //Nothing to do. We don't need a storage outside ::Load and ::Save.
 return NOERROR;
 }

STDMETHODIMP CImpIPersistStorage::Load(LPSTORAGE pIStorage)
 {
 LPCPolyline pObj=(LPCPolyline)m_pObj;
 POLYLINEDATA pl;
 ULONG cb;
 LPSTREAM pIStream;
 HRESULT hr;

 if (NULL==pIStorage)
 return ResultFromScode(STG_E_INVALIDPOINTER);

 //We don't check ClassStg to remain compatible with other chatpers.

 //Open the CONTENTS stream
 hr=pIStorage->OpenStream("CONTENTS", 0, STGM_DIRECT | STGM_READ
 | STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 if (FAILED(hr))
 return ResultFromScode(STG_E_READFAULT);

 //Read all the data into the POLYLINEDATA structure.
 hr=pIStream->Read((LPVOID)&pl, CBPOLYLINEDATA, &cb);
 pIStream->Release();

 if (CBPOLYLINEDATA!=cb)
 return ResultFromScode(STG_E_READFAULT);

 pObj->m_pIPolyline->DataSet(&pl, TRUE, TRUE);
 return NOERROR;
 }

STDMETHODIMP CImpIPersistStorage::Save(LPSTORAGE pIStorage, BOOL
fSameAsLoad)
 {
 LPCPolyline pObj=(LPCPolyline)m_pObj;
 POLYLINEDATA pl;
 ULONG cb;

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 54 :

 LPSTREAM pIStream;
 HRESULT hr;

 if (NULL==pIStorage)
 return ResultFromScode(STG_E_INVALIDPOINTER);

 /*
 * fSameAsLoad is not important to us since we always rewrite
 * an entire stream as well as the identification tags for this
 * object. Note that we don't bother to check the ClassStg
 * above in ::Load to remain compatible with other revisions
 * of Polyline in other chapters.
 */

 WriteClassStg(pIStorage, pObj->m_clsID);
 WriteFmtUserTypeStg(pIStorage, pObj->m_cf, (*pObj->m_pST)[IDS_USERTYPE]);

 hr=pIStorage->CreateStream("CONTENTS", STGM_DIRECT | STGM_CREATE
 | STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, 0, &pIStream);

 if (FAILED(hr))
 return ResultFromScode(STG_E_WRITEFAULT);

 pObj->m_pIPolyline->DataGet(&pl);
 hr=pIStream->Write((LPVOID)&pl, CBPOLYLINEDATA, &cb);
 pIStream->Release();

 return (SUCCEEDED(hr) && CBPOLYLINEDATA==cb) ?
 NOERROR : ResultFromScode(STG_E_WRITEFAULT);
 }

STDMETHODIMP CImpIPersistStorage::SaveCompleted(LPSTORAGE pIStorage)
 {
 /*
 * We have nothing to do here since we do everything in ::Load and
 * ::Save. For most objects than handle saves this way, they need
 * no code here. Other objects must release their current storage
 * here and begin using the new one in pIStorage.
 */

 return NOERROR;
 }

STDMETHODIMP CImpIPersistStorage::HandsOffStorage(void)

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 55

 {
 //Nothing for us to do
 return NOERROR;
 }

You can see that most of the implementation of this interface
(::GetClassID, ::IsDirty, ::InitNew, ::SaveCompleted, and ::HandsOffStorage) is trivial since the Polyline
requires no incremental access to its eventual storage. ::GetClassID and ::IsDirty only require one-line
implementations to return an already known value or status. That leaves only ::Load and ::Save as the
interesting functions, but even they are brainless.

Polyline's IPersistStorage::Load simply opens the "CONTENTS" stream, reads the data, releases the
stream, and makes the data current. We continue to use "CONTENTS" as the stream name here to remain
compatible with the version 2.0 files from the Schmoo (not CoSchmoo) application although we no longer
worry about reading 1.0 formats or about reading the newer format we wrote in Chapter 4. If you want to
convert other formats use the Schmoo program in this chapter instead. Other than these
simplifications, ::Load is implemented like any other compound file code.

The implementation of IPersistStorage::Save does pretty much the standard things as well, simplified by
the fact that Polyline doesn't hold on to any storage. Therefore ::Save just creates a new stream in the
provides storage and writes to it. During this function as well, we also write identification streams into the
storage as done in the other samples:

WriteClassStg(pIStorage, pObj->m_clsID);
WriteFmtUserTypeStg(pIStorage, pObj->m_cf, (*pObj->m_pST)[IDS_USERTYPE]);

The resulting storages created with Component Schmoo/Polyline here are identical to those generated by the
version of Schmoo shown in this chapter. The only difference is that we write a differently CLSID, format,
and user type into the storage than Schmoo. You can use the DFVIEW.EXE tool in the OLE 2.0 toolkit to
peek into these files and verify my claims.

OLE 2.0 Embedded Objects and IPersistStorage

All OLE 2.0 embedded objects must implement IPersistStorage as one of the three fundamental
compound document object interfaces. Polyline will eventually become such an object so it makes
sense at this time to implement this portion of compound document requirements now. An
embedded object should not expect that the IStorage it receives through IPersistStorage is actually on
disk, nor can it assume anything about how the storage was opened (although it can find out using
IStorage::Stat). Any embedded object must follow the same protocol as described here irrespective
of the context in which it's being used.

Compound File Defragmentation
Since compound files inherently provide incremental saves, the physical size of a compound file on disk will
typically be greater than necessary. This is because the size of the file is determined by the amount of space
between the first and last sectors used by that file. This is like calculating free space on your hard disk by the
location of the first and last files on it instead of by the amount of actual unused sectors: you could have two
1K files on a 1GB disk but since they are located at opposite ends of the drive the disk is considered full.

While this does not actually happen on hard disks, it can happen within the confines of a compound file:
there may be plenty of unused space inside the file itself, but the size of that file as reported by the operating
system is defined by the first and last used sectors regardless of the internal allocation. While free space is
recycled when you write data to the compound file, there is always this possibility of internal fragmentation
and larger-than-necessary files as shown in Figure 5-6.

Figure 5-6: A fragmented compound file that takes up more room than necessary on the file system.

A number of tools are available to defragment your hard drive. The Smasher utility in Listing 5-4 is such
a tool for a compound file. Smasher is implemented as a File Manager Extension DLL that is compatible
both with the File Managers of both Windows 3.1 and Windows for Workgroups 3.1. In the latter system

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 56 :

Smasher also contributes a toolbar button which is an additional feature of the Windows for Workgroups File
Manager. Note that Smasher is written in C++ although most of it looks like straight C: the interface
member calls use pInterface->MemberFunction(...) instead of pInterface->lpVtbl-
>MemberFunction(pInterface, ...). Other than that there are no C++ specifics in this code.

SMASHER.CPP

/*
 * SMASHER.CPP
 *
 * Functions to demonstrate a File Manager extension DLL that implements
 * a toolbar button to defragment selected compound files.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved.
 */

#include <windows.h>
#include <ole2.h>
#include "wfext.h" //Windows for Workgroups version.
#include "smasher.h"

HINSTANCE g_hInst;
BOOL fInitialized;

//Toolbar to place on Windows for Workgroups File Manager.
EXT_BUTTON btns[1]={{IDM_SMASH, IDS_SMASHHELP+1, 0}};

HANDLE FAR PASCAL LibMain(HINSTANCE hInstance, WORD wDataSeg
 , WORD cbHeapSize, LPSTR lpCmdLine)
 {
 //Remember our instance.
 g_hInst=hInstance;

 if (0!=cbHeapSize)
 UnlockData(0);

 return hInstance;
 }

void FAR PASCAL WEP(int bSystemExit)
 {

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 57

 return;
 }

/*
 * FMExtensionProc
 *
 * Purpose:
 * File Manager Extension callback function, receives messages from
 * file manager when extension toolbar buttons and commands are
 * invoked.
 *
 * Parameters:
 * hWnd HWND of File Manager.
 * iMsg UINT message identifier
 * lParam LONG extra information.
 */

Listing 5-4: The Smasher extension for File Manager that defragments a Compound File.

HMENU FAR PASCAL FMExtensionProc(HWND hWnd, UINT iMsg, LONG lParam)
 {
 HMENU hMenu=NULL;
 HRESULT hr;
 LPMALLOC pIMalloc;
 LPFMS_LOAD pLoad;
 LPFMS_TOOLBARLOAD pTool;
 LPFMS_HELPSTRING pHelp;

 switch (iMsg)
 {
 case FMEVENT_LOAD:
 pLoad=(LPFMS_LOAD)lParam;
 pLoad->dwSize=sizeof(FMS_LOAD);

 /*
 * Check if our host did CoInitialize by trying CoGetMalloc.
 * If it doesn't work, then we'll CoInitialize ourselves.
 */
 hr=CoGetMalloc(MEMCTX_TASK, &pIMalloc);

 if (SUCCEEDED(hr))
 pIMalloc->Release();
 else
 {

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 58 :

 hr=CoInitialize(NULL);

 if (FAILED(hr))
 return NULL;

 fInitialized=TRUE;
 }

 //Assign the popup menu name for extension
 LoadString(g_hInst, IDS_SMASH, pLoad->szMenuName
 , sizeof(pLoad->szMenuName));

 //Load the popup menu
 pLoad->hMenu=LoadMenu(g_hInst, MAKEINTRESOURCE(IDR_MENU));

 return pLoad->hMenu;

 case FMEVENT_UNLOAD:
 if (fInitialized)
 CoUninitialize();
 break;

 case FMEVENT_TOOLBARLOAD:
 /*
 * File Manager has loaded our toolbar extension, so fill
 * the TOOLBARLOAD structure with information about our
 * buttons. This is only for Windows for Workgroups.
 */

 pTool=(LPFMS_TOOLBARLOAD)lParam;
 pTool->lpButtons= (LPEXT_BUTTON)&btns;
 pTool->cButtons = 1;
 pTool->cBitmaps = 1;
 pTool->idBitmap = IDR_BITMAP;
 break;

 case FMEVENT_HELPSTRING:
 //File Manager is requesting a status-line help string.
 pHelp=(LPFMS_HELPSTRING)lParam;

 LoadString(g_hInst, IDS_SMASHHELP+pHelp->idCommand
 , pHelp->szHelp, sizeof(pHelp->szHelp));

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 59

 break;

 case IDM_SMASH:
 SmashSelectedFiles(hWnd);
 break;
 }

 return hMenu;
 }

BOOL SmashSelectedFiles(HWND hWnd)
 {
 FMS_GETFILESEL fms;
 UINT cFiles;
 UINT i;
 LPSTR pszErr;
 HRESULT hr;
 STATSTG st;
 OFSTRUCT of;
 LPMALLOC pIMalloc;
 LPSTORAGE pIStorageOld;
 LPSTORAGE pIStorageNew;

 /*
 * Retrieve information from File Manager about the selected
 * files and allocate memory for the paths and filenames.
 */

 //Get the number of selected items.
 cFiles=(UINT)SendMessage(hWnd, FM_GETSELCOUNT, 0, 0L);

 //Nothing to do, so quit.
 if (0==cFiles)
 return TRUE;

 //Get error string memory
 hr=CoGetMalloc(MEMCTX_TASK, &pIMalloc);

 if (FAILED(hr))
 return FALSE;

 pszErr=(LPSTR)pIMalloc->Alloc(1024);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 60 :

 /*
 * Enumerate the selected files and directories using the FM_GETFILESEL
 * message to the File Manager window. For each file, check if its
 * a Compound File (StgIsStorageFile) and if not, skip it.
 *
 * If it is a compound file, then create a temp file and ::CopyTo
 * from old to new. If this works, then we reopen the old file
 * in overwrite mode and ::CopyTo back into it.
 */

 for (i = 0; i < cFiles; i++)
 {
 SendMessage(hWnd, FM_GETFILESEL, i, (LONG)(LPSTR)&fms);

 //Skip non-storages.
 hr=StgIsStorageFile(fms.szName);

 if (FAILED(hr))
 {
 wsprintf(pszErr, SZERRNOTACOMPOUNDFILE, (LPSTR)fms.szName);
 MessageBox(hWnd, pszErr, SZSMASHER, MB_OK | MB_ICONHAND);
 continue;
 }

 /*
 * Create a temporary Compound File. We don't use DELETEONRELEASE
 * in case we have to save it when coying over the old file fails.
 */
 hr=StgCreateDocfile(NULL, STGM_CREATE | STGM_DIRECT |
STGM_READWRITE
 | STGM_SHARE_EXCLUSIVE, 0, &pIStorageNew);

 if (FAILED(hr))
 {
 MessageBox(hWnd, SZERRTEMPFILE, SZSMASHER, MB_OK |
MB_ICONHAND);
 continue;
 }

 //Open the existing file as read-only
 hr=StgOpenStorage(fms.szName, NULL, STGM_DIRECT | STGM_READ
 | STGM_SHARE_DENY_WRITE, NULL, 0, &pIStorageOld);

 if (FAILED(hr))
 {

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 61

 pIStorageNew->Release();
 wsprintf(pszErr, SZERROPENFAILED, (LPSTR)fms.szName);
 MessageBox(hWnd, pszErr, SZSMASHER, MB_OK | MB_ICONHAND);
 continue;
 }

 /*
 * Compress with ::CopyTo. Since the temp is opened in
 * direct mode, changes are immediate.
 */
 hr=pIStorageOld->CopyTo(NULL, NULL, NULL, pIStorageNew);
 pIStorageOld->Release();

 if (FAILED(hr))
 {
 pIStorageNew->Release();
 MessageBox(hWnd, SZERRTEMPFILECOPY, SZSMASHER, MB_OK |
MB_ICONHAND);
 continue;
 }

 //Temp file contains the defragmented copy now, try copying back.
 hr=StgOpenStorage(fms.szName, NULL, STGM_DIRECT | STGM_CREATE
 | STGM_WRITE | STGM_SHARE_EXCLUSIVE, NULL, 0, &pIStorageOld);

 if (FAILED(hr))
 {
 pIStorageNew->Stat(&st, 0);
 pIStorageNew->Release();

 wsprintf(pszErr, SZERRTEMPHASFILE, (LPSTR)st.pwcsName);
 pIMalloc->Free((LPVOID)st.pwcsName);

 MessageBox(hWnd, pszErr, SZSMASHER, MB_OK | MB_ICONHAND);
 continue;
 }

 //Copy over the old one.
 pIStorageNew->CopyTo(NULL, NULL, NULL, pIStorageOld);
 pIStorageOld->Release();

 //Delete the temporary file.
 pIStorageNew->Stat(&st, 0);
 pIStorageNew->Release();

 OpenFile(st.pwcsName, &of, OF_DELETE);

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 62 :

 pIMalloc->Free((LPVOID)st.pwcsName);
 }

 pIMalloc->Free((LPVOID)pszErr);
 pIMalloc->Release();

 return TRUE;
 }

SMASHER.H

/*
 * SMASHER.H
 *
 * Definitions and function prototypes for the file manager extesion
 * SMASHER.DLL.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved.
 */

//Resource identifiers
#define IDR_BITMAP 1
#define IDR_MENU 1

//Menu constants
#define IDS_SMASH 1
#define IDS_SMASHHELP 100
#define IDM_SMASH 1

//Cheap strings
#define SZSMASHER "Compound File Smasher"
#define SZERRNOTACOMPOUNDFILE "Smasher cannot defragment %s.\n\rNot a
compound file."
#define SZERRTEMPFILE "Could not create an intermediate file.\n\rCheck disk
space and your TEMP environment variable."
#define SZERROPENFAILED "Could not access %s for defragmentation.\n\rFile
could be locked."
#define SZERRTEMPFILECOPY "Could not write to intermediate file.\n\rCould be out
of disk space or memory."
#define SZERRTEMPHASFILE "Failure to overwrite file. Defragemented version can
be found in\r\n%s."

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

: Page 63

//SMASHER.CPP
BOOL SmashSelectedFiles(HWND);

extern "C"
 {
 HMENU FAR PASCAL FMExtensionProc(HWND hWnd, UINT iMsg, LONG lParam);
 }

SMASHER.RC

/*
 * SMASHER.RC
 *
 * Menu and string resources for SMASHER.DLL. The menu is passed
 * as a popup menu to File Manager, the bitmap is used to define
 * the toolbar button image, and the string table is used to provide
 * File Manager with menu commands and strings.
 *
 * Copyright (c)1993 Microsoft Corporation, All Rights Reserved.
 */

#include <windows.h>
#include "smasher.h"

IDR_BITMAP BITMAP smasher.bmp

IDR_MENU MENU
 BEGIN
 MENUITEM "&Smash Compound File...", IDM_SMASH
 END

STRINGTABLE
 BEGIN
 IDS_SMASH "&Smash Compound Files"
 IDS_SMASHHELP, "Commands for Compound Files"
 IDS_SMASHHELP+1, "Defragments the selected Compound Files"
 END

SMASHER.BMP
This image is used for a toolbar button in the Windows for Workgroups 3.1 File Manager.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

Page 64 :

Smasher's implementation is simple. First it calls StgIsStorageFile to check that the file is actually a
compound file. Next it creates a temporary file for the defragmented copy after which it opens the file to
defragment. It then calls ::CopyTo from the original file to the temporary file, which performs the
defragmentation as shown in Figure 5-7.

Figure 5-7: IStorage::CopyTo inherently defragments all storages and streams in the process of
copying one compound file to another. Unused space is returned to the file system.

Smasher then reopens the original file with write permissions and uses ::CopyTo to write the
defragmented data from the temporary file into the new file under the original name. When this is done
Smasher closes the files and deletes the temporary one.

There are two other important points about Smasher. First of all, in order to delete the temporary file it
has to have a filename to pass to OpenFile(..., OF_DELETE). This can be obtained by calling ::Stat on the
temporary file which fills a STATSTG structure pointing to the filename in pwcsName. As mentioned
earlier, we are responsible for this string which we must pass to the task allocator's ::Free when we are done.
We also use this task allocator to get 1K of scratch memory in which to generate error messages, so the
function SmashSelectedFiles calls CoGetMalloc early on to obtain the allocator matching that call with
IMalloc::Release at the end.

Now remember again that CoGetMalloc returns the task allocator from CoInitialize. Well, File Manager
is not an OLE 2.0 application and therefore has not called CoInitialize; that does not stop us, however, from
calling it ourselves in this DLL which happens in FMEVENT_LOAD case of FMExtensionProc. In this case
we first try CoGetMalloc to test whether or not File Manager has already called CoInitialize, as it will in the
future. If it has not, then we can go ahead and call CoInitailize(NULL), making sure to match that call in
FMEVENT_UNLOAD with CoUninitilize.

If you would like more information on File Manager Extensions, please refer to your Windows 3.1
Software Development Kit.

Summary
Structured storage is a model designed to sit on top of an existing file system that provides sharable storage
elements which can greatly improve performance of many large data transfers as well as simplifying the
implementation of features such as incremental save. The model describes a 'file system within a file' with
storage objects that act like directories and stream objects that act like files. Applications benefit from
structuring data into a directory and file model (thereby reducing many uses of seek offsets) but still maintain
the data within a single entity on the actual file system. The actual storage device is hidden from storage and
stream objects by a LockBytes object.

The OLE 2.0 provided implementation of this model, Compound Files, not only can apply anywhere you
would normally use traditional file I/O but also open new possibilities of managing your application's data
structures. Compound files also offer support for transactioning to further reinforce the strength of this
storage model over traditional file usage. Compound files are an important part of OLE 2.0 as they are used
in data transfer as well as compound document implementations. Three standard interfaces define functions
for objects that wish to support serialization to a storage object, a stream object, or a file.

One drawback to using compound files is a potential for larger disk files that can also become internally
fragmented, but compound files provides its own method for defragmentation. It is therefore trivial to write a
defragmentation tool.

Programming for Windows with Object Linking and Embedding 2.0: DRAFT 4/19/93

	Chapter Five
	Structured Storage and Compound Files
	Motivation
	Patron Files with a Hangover
	The Non-Alcoholic Alternative
	Alcohol without the Hangovers: Compound Files

	Features of Compound Files
	Stream, Storage, and LockBytes Objects
	Element Naming
	Access Modes
	Incremental Access
	Sharable Elements

	Compound Files Objects and Interfaces
	Storage Objects and the IStorage Interface
	Stream Objects and the IStream Interface
	LockBytes Objects and the ILockBytes Interface
	The ::Stat Member Function and STATSTG

	Compound Files in Practice
	Simple Storage: Schmoo
	Pulling Rabbits from the Hat with STGM_CONVERT
	Streams vs. Files

	Complex Compound Files: Patron
	The Root Storage and Temporary Files
	Managing Sub-Storages
	Multi-Level Commits
	File Save As Operations
	Low-Memory Save As Operations
	Streams as Memory Structures

	Standard Summary Information Property Set
	Other OLE 2.0 Technologies and Structured Storage
	The IPersistStorage, -Stream, and -File Interfaces
	A Heavy Dose of Protocol with IPersistStorage
	Of Component Users and IPersistStorage: Component Schmoo
	Of Component Objects and IPersistStorage: Polyline

	Compound File Defragmentation
	Summary

